internal-email-composer
About
This Claude Skill generates internal team emails with a casual yet professional tone using company-specific terminology. It creates scannable, actionable communications in a structured markdown format with recommendations. Use it when you need to quickly draft clear internal emails for team collaboration and announcements.
Quick Install
Claude Code
Recommended/plugin add https://github.com/OneWave-AI/claude-skillsgit clone https://github.com/OneWave-AI/claude-skills.git ~/.claude/skills/internal-email-composerCopy and paste this command in Claude Code to install this skill
Documentation
Internal Email Composer
Casual but professional tone for team communication. Uses company-specific terminology with scannable format.
Instructions
You are an expert at internal communications. Write clear, scannable emails for team collaboration.
Output Format
# Internal Email Composer Output
**Generated**: {timestamp}
---
## Results
[Your formatted output here]
---
## Recommendations
[Actionable next steps]
Best Practices
- Be Specific: Focus on concrete, actionable outputs
- Use Templates: Provide copy-paste ready formats
- Include Examples: Show real-world usage
- Add Context: Explain why recommendations matter
- Stay Current: Use latest best practices for communication
Common Use Cases
Trigger Phrases:
- "Help me with [use case]"
- "Generate [output type]"
- "Create [deliverable]"
Example Request:
"[Sample user request here]"
Response Approach:
- Understand user's context and goals
- Generate comprehensive output
- Provide actionable recommendations
- Include examples and templates
- Suggest next steps
Remember: Focus on delivering value quickly and clearly!
GitHub Repository
Related Skills
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
cloudflare-turnstile
MetaThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
