Back to Skills

data-anonymizer

majiayu000
Updated 2 days ago
58
9
58
View on GitHub
Communicationaidata

About

This Claude skill detects and masks PII like names, emails, and phone numbers in both text strings and CSV files. It offers multiple anonymization strategies, including reversible tokenization for data mapping. Use it to quickly sanitize sensitive data in documents or structured datasets for development or testing.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/majiayu000/claude-skill-registry
Git CloneAlternative
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/data-anonymizer

Copy and paste this command in Claude Code to install this skill

Documentation

Data Anonymizer

Detect and mask personally identifiable information (PII) in text documents and structured data. Supports multiple masking strategies and can process CSV files at scale.

Quick Start

from scripts.data_anonymizer import DataAnonymizer

# Anonymize text
anonymizer = DataAnonymizer()
result = anonymizer.anonymize("Contact John Smith at [email protected] or 555-123-4567")
print(result)
# "Contact [NAME] at [EMAIL] or [PHONE]"

# Anonymize CSV
anonymizer.anonymize_csv("customers.csv", "customers_anon.csv")

Features

  • PII Detection: Names, emails, phones, SSN, addresses, credit cards, dates
  • Multiple Strategies: Mask, redact, hash, fake data replacement
  • CSV Processing: Anonymize specific columns or auto-detect
  • Reversible Tokens: Optional mapping for de-anonymization
  • Custom Patterns: Add your own PII patterns
  • Audit Report: List all detected PII with locations

API Reference

Initialization

anonymizer = DataAnonymizer(
    strategy="mask",      # mask, redact, hash, fake
    reversible=False      # Enable token mapping
)

Text Anonymization

# Basic anonymization
result = anonymizer.anonymize(text)

# With specific PII types
result = anonymizer.anonymize(text, pii_types=["email", "phone"])

# Get detected PII report
result, report = anonymizer.anonymize(text, return_report=True)

Masking Strategies

text = "Email [email protected], call 555-1234"

# Mask (default) - replace with type labels
anonymizer.strategy = "mask"
# "Email [EMAIL], call [PHONE]"

# Redact - replace with asterisks
anonymizer.strategy = "redact"
# "Email ***************, call ********"

# Hash - replace with hash
anonymizer.strategy = "hash"
# "Email a1b2c3d4, call e5f6g7h8"

# Fake - replace with realistic fake data
anonymizer.strategy = "fake"
# "Email [email protected], call 555-9876"

CSV Processing

# Auto-detect PII columns
anonymizer.anonymize_csv("input.csv", "output.csv")

# Specify columns
anonymizer.anonymize_csv(
    "input.csv",
    "output.csv",
    columns=["name", "email", "phone"]
)

# Different strategies per column
anonymizer.anonymize_csv(
    "input.csv",
    "output.csv",
    column_strategies={
        "name": "fake",
        "email": "hash",
        "ssn": "redact"
    }
)

Reversible Anonymization

anonymizer = DataAnonymizer(reversible=True)

# Anonymize with token mapping
result = anonymizer.anonymize("John Smith: [email protected]")
mapping = anonymizer.get_mapping()

# Save mapping securely
anonymizer.save_mapping("mapping.json", encrypt=True, password="secret")

# Later, de-anonymize
anonymizer.load_mapping("mapping.json", password="secret")
original = anonymizer.deanonymize(result)

Custom Patterns

# Add custom PII pattern
anonymizer.add_pattern(
    name="employee_id",
    pattern=r"EMP-\d{6}",
    label="[EMPLOYEE_ID]"
)

CLI Usage

# Anonymize text file
python data_anonymizer.py --input document.txt --output document_anon.txt

# Anonymize CSV
python data_anonymizer.py --input customers.csv --output customers_anon.csv

# Specific strategy
python data_anonymizer.py --input data.csv --output anon.csv --strategy fake

# Generate audit report
python data_anonymizer.py --input document.txt --report audit.json

# Specific PII types only
python data_anonymizer.py --input doc.txt --types email phone ssn

CLI Arguments

ArgumentDescriptionDefault
--inputInput fileRequired
--outputOutput fileRequired
--strategyMasking strategymask
--typesPII types to detectall
--columnsCSV columns to processauto
--reportGenerate audit report-
--reversibleEnable token mappingFalse

Supported PII Types

TypeExamplesPattern
nameJohn Smith, Mary JohnsonNLP-based
email[email protected]Regex
phone555-123-4567, (555) 123-4567Regex
ssn123-45-6789Regex
credit_card4111-1111-1111-1111Regex + Luhn
address123 Main St, City, ST 12345NLP + Regex
date_of_birth01/15/1990, January 15, 1990Regex
ip_address192.168.1.1Regex

Examples

Anonymize Customer Support Logs

anonymizer = DataAnonymizer(strategy="mask")

log = """
Ticket #1234: Customer John Doe ([email protected]) called about
billing issue. SSN on file: 123-45-6789. Callback number: 555-867-5309.
Address: 123 Oak Street, Springfield, IL 62701.
"""

result = anonymizer.anonymize(log)
print(result)
# Ticket #1234: Customer [NAME] ([EMAIL]) called about
# billing issue. SSN on file: [SSN]. Callback number: [PHONE].
# Address: [ADDRESS].

GDPR Compliance for Database Export

anonymizer = DataAnonymizer(strategy="hash")

# Consistent hashing for joins
anonymizer.anonymize_csv(
    "users.csv",
    "users_anon.csv",
    columns=["email", "name", "phone"]
)

anonymizer.anonymize_csv(
    "orders.csv",
    "orders_anon.csv",
    columns=["customer_email"]  # Same hash as users.email
)

Generate Test Data from Production

anonymizer = DataAnonymizer(strategy="fake")

# Replace real PII with realistic fake data
anonymizer.anonymize_csv(
    "production_data.csv",
    "test_data.csv"
)

# Test data has same structure but fake PII

Dependencies

pandas>=2.0.0
faker>=18.0.0

Limitations

  • Name detection may miss unusual names
  • Address detection works best for US formats
  • Custom patterns may be needed for domain-specific PII
  • Fake data replacement doesn't preserve exact format

GitHub Repository

majiayu000/claude-skill-registry
Path: skills/data-anonymizer

Related Skills

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill