V3 Performance Optimization
About
This skill provides comprehensive performance optimization for Claude v3, delivering significant speedups in Flash Attention and search operations while reducing memory usage. It includes benchmarking tools and optimization suites to validate aggressive performance targets. Developers should use it when they need to achieve industry-leading efficiency in their Claude implementations.
Quick Install
Claude Code
Recommended/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/V3 Performance OptimizationCopy and paste this command in Claude Code to install this skill
Documentation
V3 Performance Optimization
What This Skill Does
Validates and optimizes claude-flow v3 to achieve industry-leading performance through Flash Attention, AgentDB HNSW indexing, and comprehensive system optimization with continuous benchmarking.
Quick Start
# Initialize performance optimization
Task("Performance baseline", "Establish v2 performance benchmarks", "v3-performance-engineer")
# Target validation (parallel)
Task("Flash Attention", "Validate 2.49x-7.47x speedup target", "v3-performance-engineer")
Task("Search optimization", "Validate 150x-12,500x search improvement", "v3-performance-engineer")
Task("Memory optimization", "Achieve 50-75% memory reduction", "v3-performance-engineer")
Performance Target Matrix
Flash Attention Revolution
┌─────────────────────────────────────────┐
│ FLASH ATTENTION │
├─────────────────────────────────────────┤
│ Baseline: Standard attention │
│ Target: 2.49x - 7.47x speedup │
│ Memory: 50-75% reduction │
│ Latency: Sub-millisecond processing │
└─────────────────────────────────────────┘
Search Performance Revolution
┌─────────────────────────────────────────┐
│ SEARCH OPTIMIZATION │
├─────────────────────────────────────────┤
│ Current: O(n) linear search │
│ Target: 150x - 12,500x improvement │
│ Method: HNSW indexing │
│ Latency: <100ms for 1M+ entries │
└─────────────────────────────────────────┘
Comprehensive Benchmark Suite
Startup Performance
class StartupBenchmarks {
async benchmarkColdStart(): Promise<BenchmarkResult> {
const startTime = performance.now();
await this.initializeCLI();
await this.initializeMCPServer();
await this.spawnTestAgent();
const totalTime = performance.now() - startTime;
return {
total: totalTime,
target: 500, // ms
achieved: totalTime < 500
};
}
}
Memory Operation Benchmarks
class MemoryBenchmarks {
async benchmarkVectorSearch(): Promise<SearchBenchmark> {
const queries = this.generateTestQueries(10000);
// Baseline: Current linear search
const baselineTime = await this.timeOperation(() =>
this.currentMemory.searchAll(queries)
);
// Target: HNSW search
const hnswTime = await this.timeOperation(() =>
this.agentDBMemory.hnswSearchAll(queries)
);
const improvement = baselineTime / hnswTime;
return {
baseline: baselineTime,
hnsw: hnswTime,
improvement,
targetRange: [150, 12500],
achieved: improvement >= 150
};
}
async benchmarkMemoryUsage(): Promise<MemoryBenchmark> {
const baseline = process.memoryUsage().heapUsed;
await this.loadTestDataset();
const withData = process.memoryUsage().heapUsed;
await this.enableOptimization();
const optimized = process.memoryUsage().heapUsed;
const reduction = (withData - optimized) / withData;
return {
baseline,
withData,
optimized,
reductionPercent: reduction * 100,
targetReduction: [50, 75],
achieved: reduction >= 0.5
};
}
}
Swarm Coordination Benchmarks
class SwarmBenchmarks {
async benchmark15AgentCoordination(): Promise<SwarmBenchmark> {
const agents = await this.spawn15Agents();
// Coordination latency
const coordinationTime = await this.timeOperation(() =>
this.coordinateSwarmTask(agents)
);
// Task decomposition
const decompositionTime = await this.timeOperation(() =>
this.decomposeComplexTask()
);
// Consensus achievement
const consensusTime = await this.timeOperation(() =>
this.achieveSwarmConsensus(agents)
);
return {
coordination: coordinationTime,
decomposition: decompositionTime,
consensus: consensusTime,
agentCount: 15,
efficiency: this.calculateEfficiency(agents)
};
}
}
Flash Attention Benchmarks
class AttentionBenchmarks {
async benchmarkFlashAttention(): Promise<AttentionBenchmark> {
const sequences = this.generateSequences([512, 1024, 2048, 4096]);
const results = [];
for (const sequence of sequences) {
// Baseline attention
const baselineResult = await this.benchmarkStandardAttention(sequence);
// Flash attention
const flashResult = await this.benchmarkFlashAttention(sequence);
results.push({
sequenceLength: sequence.length,
speedup: baselineResult.time / flashResult.time,
memoryReduction: (baselineResult.memory - flashResult.memory) / baselineResult.memory,
targetSpeedup: [2.49, 7.47],
achieved: this.checkTarget(flashResult, [2.49, 7.47])
});
}
return {
results,
averageSpeedup: this.calculateAverage(results, 'speedup'),
averageMemoryReduction: this.calculateAverage(results, 'memoryReduction')
};
}
}
SONA Learning Benchmarks
class SONABenchmarks {
async benchmarkAdaptationTime(): Promise<SONABenchmark> {
const scenarios = [
'pattern_recognition',
'task_optimization',
'error_correction',
'performance_tuning'
];
const results = [];
for (const scenario of scenarios) {
const startTime = performance.hrtime.bigint();
await this.sona.adapt(scenario);
const endTime = performance.hrtime.bigint();
const adaptationTimeMs = Number(endTime - startTime) / 1000000;
results.push({
scenario,
adaptationTime: adaptationTimeMs,
target: 0.05, // ms
achieved: adaptationTimeMs <= 0.05
});
}
return {
scenarios: results,
averageTime: results.reduce((sum, r) => sum + r.adaptationTime, 0) / results.length,
successRate: results.filter(r => r.achieved).length / results.length
};
}
}
Performance Monitoring Dashboard
Real-time Metrics
class PerformanceMonitor {
async collectMetrics(): Promise<PerformanceSnapshot> {
return {
timestamp: Date.now(),
flashAttention: await this.measureFlashAttention(),
searchPerformance: await this.measureSearchSpeed(),
memoryUsage: await this.measureMemoryEfficiency(),
startupTime: await this.measureStartupLatency(),
sonaAdaptation: await this.measureSONASpeed(),
swarmCoordination: await this.measureSwarmEfficiency()
};
}
async generateReport(): Promise<PerformanceReport> {
const snapshot = await this.collectMetrics();
return {
summary: this.generateSummary(snapshot),
achievements: this.checkTargetAchievements(snapshot),
trends: this.analyzeTrends(),
recommendations: this.generateOptimizations(),
regressions: await this.detectRegressions()
};
}
}
Continuous Regression Detection
class PerformanceRegression {
async detectRegressions(): Promise<RegressionReport> {
const current = await this.runFullBenchmark();
const baseline = await this.getBaseline();
const regressions = [];
for (const [metric, currentValue] of Object.entries(current)) {
const baselineValue = baseline[metric];
const change = (currentValue - baselineValue) / baselineValue;
if (change < -0.05) { // 5% regression threshold
regressions.push({
metric,
baseline: baselineValue,
current: currentValue,
regressionPercent: change * 100,
severity: this.classifyRegression(change)
});
}
}
return {
hasRegressions: regressions.length > 0,
regressions,
recommendations: this.generateRegressionFixes(regressions)
};
}
}
Optimization Strategies
Memory Optimization
class MemoryOptimization {
async optimizeMemoryUsage(): Promise<OptimizationResult> {
// Implement memory pooling
await this.setupMemoryPools();
// Enable garbage collection tuning
await this.optimizeGarbageCollection();
// Implement object reuse patterns
await this.setupObjectPools();
// Enable memory compression
await this.enableMemoryCompression();
return this.validateMemoryReduction();
}
}
CPU Optimization
class CPUOptimization {
async optimizeCPUUsage(): Promise<OptimizationResult> {
// Implement worker thread pools
await this.setupWorkerThreads();
// Enable CPU-specific optimizations
await this.enableSIMDInstructions();
// Implement task batching
await this.optimizeTaskBatching();
return this.validateCPUImprovement();
}
}
Target Validation Framework
Performance Gates
class PerformanceGates {
async validateAllTargets(): Promise<ValidationReport> {
const results = await Promise.all([
this.validateFlashAttention(), // 2.49x-7.47x
this.validateSearchPerformance(), // 150x-12,500x
this.validateMemoryReduction(), // 50-75%
this.validateStartupTime(), // <500ms
this.validateSONAAdaptation() // <0.05ms
]);
return {
allTargetsAchieved: results.every(r => r.achieved),
results,
overallScore: this.calculateOverallScore(results),
recommendations: this.generateRecommendations(results)
};
}
}
Success Metrics
Primary Targets
- Flash Attention: 2.49x-7.47x speedup validated
- Search Performance: 150x-12,500x improvement confirmed
- Memory Reduction: 50-75% usage optimization achieved
- Startup Time: <500ms cold start consistently
- SONA Adaptation: <0.05ms learning response time
- 15-Agent Coordination: Efficient parallel execution
Continuous Monitoring
- Performance Dashboard: Real-time metrics collection
- Regression Testing: Automated performance validation
- Trend Analysis: Performance evolution tracking
- Alert System: Immediate regression notification
Related V3 Skills
v3-integration-deep- Performance integration with agentic-flowv3-memory-unification- Memory performance optimizationv3-swarm-coordination- Swarm performance coordinationv3-security-overhaul- Secure performance patterns
Usage Examples
Complete Performance Validation
# Full performance suite
npm run benchmark:v3
# Specific target validation
npm run benchmark:flash-attention
npm run benchmark:agentdb-search
npm run benchmark:memory-optimization
# Continuous monitoring
npm run monitor:performance
GitHub Repository
Related Skills
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
MetaThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
Algorithmic Art Generation
MetaThis skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.
