Back to Skills

V3 Performance Optimization

majiayu000
Updated Yesterday
1 views
58
9
58
View on GitHub
Designdesign

About

This skill provides comprehensive performance optimization for Claude v3, delivering significant speedups in Flash Attention and search operations while reducing memory usage. It includes benchmarking tools and optimization suites to validate aggressive performance targets. Developers should use it when they need to achieve industry-leading efficiency in their Claude implementations.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/majiayu000/claude-skill-registry
Git CloneAlternative
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/V3 Performance Optimization

Copy and paste this command in Claude Code to install this skill

Documentation

V3 Performance Optimization

What This Skill Does

Validates and optimizes claude-flow v3 to achieve industry-leading performance through Flash Attention, AgentDB HNSW indexing, and comprehensive system optimization with continuous benchmarking.

Quick Start

# Initialize performance optimization
Task("Performance baseline", "Establish v2 performance benchmarks", "v3-performance-engineer")

# Target validation (parallel)
Task("Flash Attention", "Validate 2.49x-7.47x speedup target", "v3-performance-engineer")
Task("Search optimization", "Validate 150x-12,500x search improvement", "v3-performance-engineer")
Task("Memory optimization", "Achieve 50-75% memory reduction", "v3-performance-engineer")

Performance Target Matrix

Flash Attention Revolution

┌─────────────────────────────────────────┐
│           FLASH ATTENTION               │
├─────────────────────────────────────────┤
│  Baseline: Standard attention           │
│  Target:   2.49x - 7.47x speedup       │
│  Memory:   50-75% reduction             │
│  Latency:  Sub-millisecond processing   │
└─────────────────────────────────────────┘

Search Performance Revolution

┌─────────────────────────────────────────┐
│            SEARCH OPTIMIZATION         │
├─────────────────────────────────────────┤
│  Current:  O(n) linear search           │
│  Target:   150x - 12,500x improvement   │
│  Method:   HNSW indexing                │
│  Latency:  <100ms for 1M+ entries       │
└─────────────────────────────────────────┘

Comprehensive Benchmark Suite

Startup Performance

class StartupBenchmarks {
  async benchmarkColdStart(): Promise<BenchmarkResult> {
    const startTime = performance.now();

    await this.initializeCLI();
    await this.initializeMCPServer();
    await this.spawnTestAgent();

    const totalTime = performance.now() - startTime;

    return {
      total: totalTime,
      target: 500, // ms
      achieved: totalTime < 500
    };
  }
}

Memory Operation Benchmarks

class MemoryBenchmarks {
  async benchmarkVectorSearch(): Promise<SearchBenchmark> {
    const queries = this.generateTestQueries(10000);

    // Baseline: Current linear search
    const baselineTime = await this.timeOperation(() =>
      this.currentMemory.searchAll(queries)
    );

    // Target: HNSW search
    const hnswTime = await this.timeOperation(() =>
      this.agentDBMemory.hnswSearchAll(queries)
    );

    const improvement = baselineTime / hnswTime;

    return {
      baseline: baselineTime,
      hnsw: hnswTime,
      improvement,
      targetRange: [150, 12500],
      achieved: improvement >= 150
    };
  }

  async benchmarkMemoryUsage(): Promise<MemoryBenchmark> {
    const baseline = process.memoryUsage().heapUsed;

    await this.loadTestDataset();
    const withData = process.memoryUsage().heapUsed;

    await this.enableOptimization();
    const optimized = process.memoryUsage().heapUsed;

    const reduction = (withData - optimized) / withData;

    return {
      baseline,
      withData,
      optimized,
      reductionPercent: reduction * 100,
      targetReduction: [50, 75],
      achieved: reduction >= 0.5
    };
  }
}

Swarm Coordination Benchmarks

class SwarmBenchmarks {
  async benchmark15AgentCoordination(): Promise<SwarmBenchmark> {
    const agents = await this.spawn15Agents();

    // Coordination latency
    const coordinationTime = await this.timeOperation(() =>
      this.coordinateSwarmTask(agents)
    );

    // Task decomposition
    const decompositionTime = await this.timeOperation(() =>
      this.decomposeComplexTask()
    );

    // Consensus achievement
    const consensusTime = await this.timeOperation(() =>
      this.achieveSwarmConsensus(agents)
    );

    return {
      coordination: coordinationTime,
      decomposition: decompositionTime,
      consensus: consensusTime,
      agentCount: 15,
      efficiency: this.calculateEfficiency(agents)
    };
  }
}

Flash Attention Benchmarks

class AttentionBenchmarks {
  async benchmarkFlashAttention(): Promise<AttentionBenchmark> {
    const sequences = this.generateSequences([512, 1024, 2048, 4096]);
    const results = [];

    for (const sequence of sequences) {
      // Baseline attention
      const baselineResult = await this.benchmarkStandardAttention(sequence);

      // Flash attention
      const flashResult = await this.benchmarkFlashAttention(sequence);

      results.push({
        sequenceLength: sequence.length,
        speedup: baselineResult.time / flashResult.time,
        memoryReduction: (baselineResult.memory - flashResult.memory) / baselineResult.memory,
        targetSpeedup: [2.49, 7.47],
        achieved: this.checkTarget(flashResult, [2.49, 7.47])
      });
    }

    return {
      results,
      averageSpeedup: this.calculateAverage(results, 'speedup'),
      averageMemoryReduction: this.calculateAverage(results, 'memoryReduction')
    };
  }
}

SONA Learning Benchmarks

class SONABenchmarks {
  async benchmarkAdaptationTime(): Promise<SONABenchmark> {
    const scenarios = [
      'pattern_recognition',
      'task_optimization',
      'error_correction',
      'performance_tuning'
    ];

    const results = [];

    for (const scenario of scenarios) {
      const startTime = performance.hrtime.bigint();
      await this.sona.adapt(scenario);
      const endTime = performance.hrtime.bigint();

      const adaptationTimeMs = Number(endTime - startTime) / 1000000;

      results.push({
        scenario,
        adaptationTime: adaptationTimeMs,
        target: 0.05, // ms
        achieved: adaptationTimeMs <= 0.05
      });
    }

    return {
      scenarios: results,
      averageTime: results.reduce((sum, r) => sum + r.adaptationTime, 0) / results.length,
      successRate: results.filter(r => r.achieved).length / results.length
    };
  }
}

Performance Monitoring Dashboard

Real-time Metrics

class PerformanceMonitor {
  async collectMetrics(): Promise<PerformanceSnapshot> {
    return {
      timestamp: Date.now(),
      flashAttention: await this.measureFlashAttention(),
      searchPerformance: await this.measureSearchSpeed(),
      memoryUsage: await this.measureMemoryEfficiency(),
      startupTime: await this.measureStartupLatency(),
      sonaAdaptation: await this.measureSONASpeed(),
      swarmCoordination: await this.measureSwarmEfficiency()
    };
  }

  async generateReport(): Promise<PerformanceReport> {
    const snapshot = await this.collectMetrics();

    return {
      summary: this.generateSummary(snapshot),
      achievements: this.checkTargetAchievements(snapshot),
      trends: this.analyzeTrends(),
      recommendations: this.generateOptimizations(),
      regressions: await this.detectRegressions()
    };
  }
}

Continuous Regression Detection

class PerformanceRegression {
  async detectRegressions(): Promise<RegressionReport> {
    const current = await this.runFullBenchmark();
    const baseline = await this.getBaseline();

    const regressions = [];

    for (const [metric, currentValue] of Object.entries(current)) {
      const baselineValue = baseline[metric];
      const change = (currentValue - baselineValue) / baselineValue;

      if (change < -0.05) { // 5% regression threshold
        regressions.push({
          metric,
          baseline: baselineValue,
          current: currentValue,
          regressionPercent: change * 100,
          severity: this.classifyRegression(change)
        });
      }
    }

    return {
      hasRegressions: regressions.length > 0,
      regressions,
      recommendations: this.generateRegressionFixes(regressions)
    };
  }
}

Optimization Strategies

Memory Optimization

class MemoryOptimization {
  async optimizeMemoryUsage(): Promise<OptimizationResult> {
    // Implement memory pooling
    await this.setupMemoryPools();

    // Enable garbage collection tuning
    await this.optimizeGarbageCollection();

    // Implement object reuse patterns
    await this.setupObjectPools();

    // Enable memory compression
    await this.enableMemoryCompression();

    return this.validateMemoryReduction();
  }
}

CPU Optimization

class CPUOptimization {
  async optimizeCPUUsage(): Promise<OptimizationResult> {
    // Implement worker thread pools
    await this.setupWorkerThreads();

    // Enable CPU-specific optimizations
    await this.enableSIMDInstructions();

    // Implement task batching
    await this.optimizeTaskBatching();

    return this.validateCPUImprovement();
  }
}

Target Validation Framework

Performance Gates

class PerformanceGates {
  async validateAllTargets(): Promise<ValidationReport> {
    const results = await Promise.all([
      this.validateFlashAttention(),     // 2.49x-7.47x
      this.validateSearchPerformance(),  // 150x-12,500x
      this.validateMemoryReduction(),    // 50-75%
      this.validateStartupTime(),        // <500ms
      this.validateSONAAdaptation()      // <0.05ms
    ]);

    return {
      allTargetsAchieved: results.every(r => r.achieved),
      results,
      overallScore: this.calculateOverallScore(results),
      recommendations: this.generateRecommendations(results)
    };
  }
}

Success Metrics

Primary Targets

  • Flash Attention: 2.49x-7.47x speedup validated
  • Search Performance: 150x-12,500x improvement confirmed
  • Memory Reduction: 50-75% usage optimization achieved
  • Startup Time: <500ms cold start consistently
  • SONA Adaptation: <0.05ms learning response time
  • 15-Agent Coordination: Efficient parallel execution

Continuous Monitoring

  • Performance Dashboard: Real-time metrics collection
  • Regression Testing: Automated performance validation
  • Trend Analysis: Performance evolution tracking
  • Alert System: Immediate regression notification

Related V3 Skills

  • v3-integration-deep - Performance integration with agentic-flow
  • v3-memory-unification - Memory performance optimization
  • v3-swarm-coordination - Swarm performance coordination
  • v3-security-overhaul - Secure performance patterns

Usage Examples

Complete Performance Validation

# Full performance suite
npm run benchmark:v3

# Specific target validation
npm run benchmark:flash-attention
npm run benchmark:agentdb-search
npm run benchmark:memory-optimization

# Continuous monitoring
npm run monitor:performance

GitHub Repository

majiayu000/claude-skill-registry
Path: skills/data/V3 Performance Optimization

Related Skills

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

creating-opencode-plugins

Meta

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

Algorithmic Art Generation

Meta

This skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.

View skill