d3js-visualization
About
This skill creates custom, interactive D3.js visualizations for complex or unique data display needs. It's ideal when you require fine-grained control over charts, graphs, maps, or real-time dashboards beyond standard chart libraries. Use it to build responsive, animated visualizations with custom interactions and data-driven DOM manipulation.
Quick Install
Claude Code
Recommended/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/d3js-visualizationCopy and paste this command in Claude Code to install this skill
Documentation
D3.js Data Visualization Skill
What is D3.js
D3.js (Data-Driven Documents) is a JavaScript library for producing dynamic, interactive data visualizations in web browsers. It uses HTML, SVG, and CSS standards to bind data to the DOM and apply data-driven transformations.
When to Use D3.js
Choose D3.js when you need:
- Custom, unique visualizations not available in chart libraries
- Fine-grained control over every visual element
- Complex interactions and animations
- Data-driven DOM manipulation beyond just charts
- Performance with large datasets (when using Canvas)
- Web standards-based visualizations
Consider alternatives when:
- Simple standard charts are sufficient (use Chart.js, Plotly)
- Quick prototyping is priority (use Observable, Vega-Lite)
- Static charts for print/reports (use matplotlib, ggplot2)
- 3D visualizations (use Three.js, WebGL libraries)
D3.js vs Other Libraries
| Library | Best For | Learning Curve | Customization |
|---|---|---|---|
| D3.js | Custom visualizations | Steep | Complete |
| Chart.js | Standard charts | Easy | Limited |
| Plotly | Scientific plots | Medium | Good |
| Highcharts | Business dashboards | Easy | Good |
| Three.js | 3D graphics | Steep | Complete |
Core Workflow
1. Project Setup
Option 1: CDN (Quick Start)
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>D3 Visualization</title>
<style>
body { margin: 0; font-family: sans-serif; }
svg { display: block; }
</style>
</head>
<body>
<div id="chart"></div>
<script src="https://d3js.org/d3.v7.min.js"></script>
<script>
// Your code here
</script>
</body>
</html>
Option 2: NPM (Production)
npm install d3
// Import all of D3
import * as d3 from "d3";
// Or import specific modules
import { select, selectAll } from "d3-selection";
import { scaleLinear, scaleTime } from "d3-scale";
2. Create Basic Chart
// Set up dimensions and margins
const margin = {top: 20, right: 30, bottom: 40, left: 50};
const width = 800 - margin.left - margin.right;
const height = 400 - margin.top - margin.bottom;
// Create SVG
const svg = d3.select("#chart")
.append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform", `translate(${margin.left},${margin.top})`);
// Load and process data
d3.csv("data.csv", d => ({
date: new Date(d.date),
value: +d.value
})).then(data => {
// Create scales
const xScale = d3.scaleTime()
.domain(d3.extent(data, d => d.date))
.range([0, width]);
const yScale = d3.scaleLinear()
.domain([0, d3.max(data, d => d.value)])
.nice()
.range([height, 0]);
// Create and append axes
svg.append("g")
.attr("transform", `translate(0,${height})`)
.call(d3.axisBottom(xScale));
svg.append("g")
.call(d3.axisLeft(yScale));
// Create line generator
const line = d3.line()
.x(d => xScale(d.date))
.y(d => yScale(d.value))
.curve(d3.curveMonotoneX);
// Draw line
svg.append("path")
.datum(data)
.attr("d", line)
.attr("fill", "none")
.attr("stroke", "steelblue")
.attr("stroke-width", 2);
});
3. Add Interactivity
Tooltips:
const tooltip = d3.select("body")
.append("div")
.attr("class", "tooltip")
.style("position", "absolute")
.style("visibility", "hidden")
.style("background", "white")
.style("border", "1px solid #ddd")
.style("padding", "10px")
.style("border-radius", "4px");
circles
.on("mouseover", function(event, d) {
tooltip
.style("visibility", "visible")
.html(`<strong>${d.name}</strong><br/>Value: ${d.value}`);
})
.on("mousemove", function(event) {
tooltip
.style("top", (event.pageY - 10) + "px")
.style("left", (event.pageX + 10) + "px");
})
.on("mouseout", function() {
tooltip.style("visibility", "hidden");
});
Transitions:
circles
.transition()
.duration(300)
.ease(d3.easeCubicOut)
.attr("r", 8);
4. Implement Responsive Design
function createChart() {
const container = d3.select("#chart");
const containerWidth = container.node().getBoundingClientRect().width;
const margin = {top: 20, right: 30, bottom: 40, left: 50};
const width = containerWidth - margin.left - margin.right;
const height = Math.min(width * 0.6, 500);
container.selectAll("*").remove(); // Clear previous
// Create SVG...
}
// Initial render
createChart();
// Re-render on resize with debouncing
let resizeTimer;
window.addEventListener("resize", () => {
clearTimeout(resizeTimer);
resizeTimer = setTimeout(createChart, 250);
});
Key Principles
Data Binding
- Use
.data()to bind data to DOM elements - Handle enter, update, and exit selections
- Use key functions for consistent element-to-data matching
- Modern syntax: use
.join()for cleaner code
Scales
- Map data values (domain) to visual values (range)
- Use appropriate scale types (linear, time, band, ordinal)
- Apply
.nice()to scales for rounded axis values - Invert y-scale range for bottom-up coordinates:
[height, 0]
SVG Coordinate System
- Origin (0,0) is at top-left corner
- Y increases downward (opposite of Cartesian)
- Use margin convention for proper spacing
- Group related elements with
<g>tags
Performance
- Use SVG for <1,000 elements
- Use Canvas for >1,000 elements
- Aggregate or sample large datasets
- Debounce resize handlers
Chart Selection Guide
Time series data? → Line chart or area chart
Comparing categories? → Bar chart (vertical or horizontal)
Showing relationships? → Scatter plot or bubble chart
Part-to-whole? → Donut chart or stacked bar (limit to 5-7 categories)
Network data? → Force-directed graph
Distribution? → Histogram or box plot
See references/chart-types.md for detailed chart selection criteria and best practices.
Common Patterns
Quick Data Loading
// Load CSV with type conversion
d3.csv("data.csv", d => ({
date: new Date(d.date),
value: +d.value,
category: d.category
})).then(data => {
createChart(data);
});
Quick Tooltip
selection
.on("mouseover", (event, d) => {
tooltip.style("visibility", "visible").html(`Value: ${d.value}`);
})
.on("mousemove", (event) => {
tooltip.style("top", event.pageY + "px").style("left", event.pageX + "px");
})
.on("mouseout", () => tooltip.style("visibility", "hidden"));
Quick Responsive SVG
svg
.attr("viewBox", `0 0 ${width} ${height}`)
.attr("preserveAspectRatio", "xMidYMid meet")
.style("width", "100%")
.style("height", "auto");
Quality Standards
Visual Quality
- Use appropriate chart type for data
- Apply consistent color schemes
- Include clear axis labels and legends
- Provide proper spacing with margin convention
- Use appropriate scale types and ranges
Interaction Quality
- Add meaningful tooltips
- Use smooth transitions (300-500ms duration)
- Provide hover feedback
- Enable keyboard navigation for accessibility
- Implement zoom/pan for detailed exploration
Code Quality
- Use key functions in data joins
- Handle enter, update, and exit properly
- Clean up previous renders before updates
- Use reusable chart pattern for modularity
- Debounce expensive operations
Accessibility
- Add ARIA labels and descriptions
- Provide keyboard navigation
- Use colorblind-safe palettes
- Include text alternatives for screen readers
- Ensure sufficient color contrast
Helper Resources
Available Scripts
- data-helpers.js: Data loading, parsing, and transformation utilities
- chart-templates.js: Reusable chart templates for common visualizations
See scripts/ directory for implementations.
Working Examples
- line-chart.html: Time series visualization with tooltips
- bar-chart.html: Grouped and stacked bar charts
- network-graph.html: Force-directed network visualization
See examples/ directory for complete implementations.
Detailed References
-
D3 Fundamentals: SVG basics, data binding, selections, transitions, events →
references/d3-fundamentals.md -
Scales and Axes: All scale types, axis customization, color palettes →
references/scales-and-axes.md -
Paths and Shapes: Line/area generators, arcs, force simulations →
references/paths-and-shapes.md -
Data Transformation: Loading, parsing, grouping, aggregation, date handling →
references/data-transformation.md -
Chart Types: Detailed guidance on when to use each chart type →
references/chart-types.md -
Advanced Patterns: Reusable charts, performance optimization, responsive design →
references/advanced-patterns.md -
Common Pitfalls: Frequent mistakes and their solutions →
references/common-pitfalls.md -
Integration Patterns: Using D3 with React, Vue, Angular, Svelte →
references/integration-patterns.md
Troubleshooting
Chart not appearing?
- Check browser console for errors
- Verify data loaded correctly
- Ensure SVG has width and height
- Check scale domains and ranges
Elements in wrong position?
- Verify scale domain matches data range
- Check if y-scale range is inverted:
[height, 0] - Confirm margin transform applied to
<g>element - Check SVG coordinate system (top-left origin)
Transitions not working?
- Ensure duration is reasonable (300-500ms)
- Check if transition applied to selection, not data
- Verify easing function is valid
- Confirm elements exist before transitioning
Poor performance?
- Reduce number of DOM elements (use Canvas if >1,000)
- Aggregate or sample data
- Debounce resize handlers
- Minimize redraws
External Resources
Official Documentation
- D3.js API Reference: https://d3js.org/
- Observable Examples: https://observablehq.com/@d3
Learning Resources
- "Interactive Data Visualization for the Web" by Scott Murray
- D3 Graph Gallery: https://d3-graph-gallery.com/
- Amelia Wattenberger's D3 Tutorial: https://wattenberger.com/blog/d3
Color Tools
- ColorBrewer: https://colorbrewer2.org/
- D3 Color Schemes: https://d3js.org/d3-scale-chromatic
Inspiration
- Observable Trending: https://observablehq.com/trending
- Reddit r/dataisbeautiful: https://reddit.com/r/dataisbeautiful
This skill provides comprehensive coverage of D3.js for creating professional, interactive data visualizations. Use the core workflow as a starting point, refer to the detailed references for specific topics, and customize the examples for your needs.
GitHub Repository
Related Skills
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
MetaThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
Algorithmic Art Generation
MetaThis skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.
