V3 Memory Unification
About
This skill consolidates 6+ legacy memory systems into a unified AgentDB backend with HNSW vector indexing, delivering 150x-12,500x search performance improvements. It implements key architectural decisions (ADR-006/009) for a hybrid memory service while maintaining backward compatibility. Use it to migrate from SQLite/Markdown to AgentDB for fast, scalable vector search in your agents.
Quick Install
Claude Code
Recommended/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/V3 Memory UnificationCopy and paste this command in Claude Code to install this skill
Documentation
V3 Memory Unification
What This Skill Does
Consolidates disparate memory systems into unified AgentDB backend with HNSW vector search, achieving 150x-12,500x search performance improvements while maintaining backward compatibility.
Quick Start
# Initialize memory unification
Task("Memory architecture", "Design AgentDB unification strategy", "v3-memory-specialist")
# AgentDB integration
Task("AgentDB setup", "Configure HNSW indexing and vector search", "v3-memory-specialist")
# Data migration
Task("Memory migration", "Migrate SQLite/Markdown to AgentDB", "v3-memory-specialist")
Systems to Unify
Legacy Systems → AgentDB
┌─────────────────────────────────────────┐
│ • MemoryManager (basic operations) │
│ • DistributedMemorySystem (clustering) │
│ • SwarmMemory (agent-specific) │
│ • AdvancedMemoryManager (features) │
│ • SQLiteBackend (structured) │
│ • MarkdownBackend (file-based) │
│ • HybridBackend (combination) │
└─────────────────────────────────────────┘
↓
┌─────────────────────────────────────────┐
│ 🚀 AgentDB with HNSW │
│ • 150x-12,500x faster search │
│ • Unified query interface │
│ • Cross-agent memory sharing │
│ • SONA learning integration │
└─────────────────────────────────────────┘
Implementation Architecture
Unified Memory Service
class UnifiedMemoryService implements IMemoryBackend {
constructor(
private agentdb: AgentDBAdapter,
private indexer: HNSWIndexer,
private migrator: DataMigrator
) {}
async store(entry: MemoryEntry): Promise<void> {
await this.agentdb.store(entry);
await this.indexer.index(entry);
}
async query(query: MemoryQuery): Promise<MemoryEntry[]> {
if (query.semantic) {
return this.indexer.search(query); // 150x-12,500x faster
}
return this.agentdb.query(query);
}
}
HNSW Vector Search
class HNSWIndexer {
constructor(dimensions: number = 1536) {
this.index = new HNSWIndex({
dimensions,
efConstruction: 200,
M: 16,
speedupTarget: '150x-12500x'
});
}
async search(query: MemoryQuery): Promise<MemoryEntry[]> {
const embedding = await this.embedContent(query.content);
const results = this.index.search(embedding, query.limit || 10);
return this.retrieveEntries(results);
}
}
Migration Strategy
Phase 1: Foundation
// AgentDB adapter setup
const agentdb = new AgentDBAdapter({
dimensions: 1536,
indexType: 'HNSW',
speedupTarget: '150x-12500x'
});
Phase 2: Data Migration
// SQLite → AgentDB
const migrateFromSQLite = async () => {
const entries = await sqlite.getAll();
for (const entry of entries) {
const embedding = await generateEmbedding(entry.content);
await agentdb.store({ ...entry, embedding });
}
};
// Markdown → AgentDB
const migrateFromMarkdown = async () => {
const files = await glob('**/*.md');
for (const file of files) {
const content = await fs.readFile(file, 'utf-8');
await agentdb.store({
id: generateId(),
content,
embedding: await generateEmbedding(content),
metadata: { originalFile: file }
});
}
};
SONA Integration
Learning Pattern Storage
class SONAMemoryIntegration {
async storePattern(pattern: LearningPattern): Promise<void> {
await this.memory.store({
id: pattern.id,
content: pattern.data,
metadata: {
sonaMode: pattern.mode,
reward: pattern.reward,
adaptationTime: pattern.adaptationTime
},
embedding: await this.generateEmbedding(pattern.data)
});
}
async retrieveSimilarPatterns(query: string): Promise<LearningPattern[]> {
return this.memory.query({
type: 'semantic',
content: query,
filters: { type: 'learning_pattern' }
});
}
}
Performance Targets
- Search Speed: 150x-12,500x improvement via HNSW
- Memory Usage: 50-75% reduction through optimization
- Query Latency: <100ms for 1M+ entries
- Cross-Agent Sharing: Real-time memory synchronization
- SONA Integration: <0.05ms adaptation time
Success Metrics
- All 7 legacy memory systems migrated to AgentDB
- 150x-12,500x search performance validated
- 50-75% memory usage reduction achieved
- Backward compatibility maintained
- SONA learning patterns integrated
- Cross-agent memory sharing operational
GitHub Repository
Related Skills
algorithmic-art
MetaThis Claude Skill creates original algorithmic art using p5.js with seeded randomness and interactive parameters. It generates .md files for algorithmic philosophies, plus .html and .js files for interactive generative art implementations. Use it when developers need to create flow fields, particle systems, or other computational art while avoiding copyright issues.
subagent-driven-development
DevelopmentThis skill executes implementation plans by dispatching a fresh subagent for each independent task, with code review between tasks. It enables fast iteration while maintaining quality gates through this review process. Use it when working on mostly independent tasks within the same session to ensure continuous progress with built-in quality checks.
executing-plans
DesignUse the executing-plans skill when you have a complete implementation plan to execute in controlled batches with review checkpoints. It loads and critically reviews the plan, then executes tasks in small batches (default 3 tasks) while reporting progress between each batch for architect review. This ensures systematic implementation with built-in quality control checkpoints.
cost-optimization
OtherThis Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.
