data-export-pdf
About
This skill generates professional PDF reports with text, tables, and embedded images using the local reportlab library. It's ideal for creating analysis summaries, formatted documentation, or combining results into a single document. A key feature is its universal compatibility, as it runs locally and works with any LLM provider.
Quick Install
Claude Code
Recommended/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/data-export-pdfCopy and paste this command in Claude Code to install this skill
Documentation
PDF Report Generation (Universal)
Overview
This skill enables you to create professional PDF reports containing analysis summaries, formatted tables, and embedded visualizations. Unlike cloud-hosted solutions, this skill uses the reportlab Python library and executes locally in your environment, making it compatible with ALL LLM providers including GPT, Gemini, Claude, DeepSeek, and Qwen.
When to Use This Skill
- Generate analysis reports with text and tables
- Create summary PDFs with embedded plots
- Export formatted documentation
- Produce publication-ready supplementary materials
- Combine multiple analysis results into a single document
How to Use
Step 1: Import Required Libraries
from reportlab.lib.pagesizes import letter, A4
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.lib import colors
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, PageBreak, Image
from reportlab.lib.enums import TA_CENTER, TA_LEFT, TA_JUSTIFY
from datetime import datetime
import matplotlib.pyplot as plt
Step 2: Create Basic PDF Document
# Create PDF file
pdf_filename = "analysis_report.pdf"
doc = SimpleDocTemplate(pdf_filename, pagesize=letter)
story = [] # Container for PDF elements
# Get default styles
styles = getSampleStyleSheet()
title_style = styles['Title']
heading_style = styles['Heading1']
normal_style = styles['Normal']
# Add title
story.append(Paragraph("Analysis Report", title_style))
story.append(Spacer(1, 0.2*inch))
# Add date
date_text = f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M')}"
story.append(Paragraph(date_text, normal_style))
story.append(Spacer(1, 0.3*inch))
# Build PDF
doc.build(story)
print(f"✅ PDF saved to: {pdf_filename}")
Step 3: Add Text Content
story = []
# Title
story.append(Paragraph("Single-Cell RNA-seq Analysis Report", title_style))
story.append(Spacer(1, 0.2*inch))
# Section heading
story.append(Paragraph("1. Overview", heading_style))
story.append(Spacer(1, 0.1*inch))
# Paragraph text
overview_text = """
This report summarizes the single-cell RNA-seq analysis performed on the dataset.
The analysis includes quality control, normalization, dimensionality reduction,
clustering, and cell type annotation.
"""
story.append(Paragraph(overview_text, normal_style))
story.append(Spacer(1, 0.2*inch))
Step 4: Add Tables
# Prepare table data
table_data = [
['Metric', 'Value'], # Header
['Total Cells', '5,000'],
['Total Genes', '20,000'],
['Mean Genes/Cell', '2,500'],
['Median UMIs/Cell', '10,000']
]
# Create table
table = Table(table_data, colWidths=[2.5*inch, 2*inch])
# Style table
table.setStyle(TableStyle([
# Header styling
('BACKGROUND', (0, 0), (-1, 0), colors.grey),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 12),
# Body styling
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black),
('FONTNAME', (0, 1), (-1, -1), 'Helvetica'),
('FONTSIZE', (0, 1), (-1, -1), 10),
]))
story.append(table)
story.append(Spacer(1, 0.3*inch))
Step 5: Embed Images/Plots
# Save matplotlib figure first
fig, ax = plt.subplots(figsize=(6, 4))
# ... create your plot ...
plot_filename = "temp_plot.png"
fig.savefig(plot_filename, dpi=150, bbox_inches='tight')
plt.close(fig)
# Add image to PDF
story.append(Paragraph("2. UMAP Visualization", heading_style))
story.append(Spacer(1, 0.1*inch))
img = Image(plot_filename, width=4*inch, height=3*inch)
story.append(img)
story.append(Spacer(1, 0.2*inch))
Complete Example: Analysis Report
from reportlab.lib.pagesizes import letter
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib.units import inch
from reportlab.lib import colors
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, Image
from datetime import datetime
import matplotlib.pyplot as plt
import pandas as pd
def create_analysis_report(adata, output_path="analysis_report.pdf"):
"""Create comprehensive PDF analysis report"""
# Initialize PDF
doc = SimpleDocTemplate(output_path, pagesize=letter)
story = []
styles = getSampleStyleSheet()
# Title
story.append(Paragraph("Single-Cell RNA-seq Analysis Report", styles['Title']))
story.append(Spacer(1, 0.2*inch))
story.append(Paragraph(f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M')}", styles['Normal']))
story.append(Spacer(1, 0.3*inch))
# Overview
story.append(Paragraph("1. Dataset Overview", styles['Heading1']))
story.append(Spacer(1, 0.1*inch))
overview_data = [
['Metric', 'Value'],
['Total Cells', f'{adata.n_obs:,}'],
['Total Genes', f'{adata.n_vars:,}'],
['Observations', ', '.join(adata.obs.columns[:5].tolist())],
]
table = Table(overview_data, colWidths=[2.5*inch, 3.5*inch])
table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.grey),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('GRID', (0, 0), (-1, -1), 1, colors.black),
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
]))
story.append(table)
story.append(Spacer(1, 0.3*inch))
# Cluster distribution
if 'clusters' in adata.obs:
story.append(Paragraph("2. Cluster Distribution", styles['Heading1']))
story.append(Spacer(1, 0.1*inch))
cluster_counts = adata.obs['clusters'].value_counts().sort_index()
cluster_data = [['Cluster', 'Cell Count', 'Percentage']]
total_cells = adata.n_obs
for cluster, count in cluster_counts.items():
percentage = (count / total_cells) * 100
cluster_data.append([str(cluster), str(count), f'{percentage:.1f}%'])
table = Table(cluster_data, colWidths=[1.5*inch, 1.5*inch, 1.5*inch])
table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.grey),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('GRID', (0, 0), (-1, -1), 1, colors.black),
('BACKGROUND', (0, 1), (-1, -1), colors.lightblue),
]))
story.append(table)
story.append(Spacer(1, 0.3*inch))
# Visualization (if UMAP exists)
if 'X_umap' in adata.obsm:
story.append(Paragraph("3. UMAP Visualization", styles['Heading1']))
story.append(Spacer(1, 0.1*inch))
# Create UMAP plot
fig, ax = plt.subplots(figsize=(6, 5))
scatter = ax.scatter(
adata.obsm['X_umap'][:, 0],
adata.obsm['X_umap'][:, 1],
c=adata.obs['clusters'].astype('category').cat.codes if 'clusters' in adata.obs else 'blue',
s=5, alpha=0.5
)
ax.set_xlabel('UMAP1')
ax.set_ylabel('UMAP2')
ax.set_title('UMAP Projection')
plot_path = 'temp_umap.png'
fig.savefig(plot_path, dpi=150, bbox_inches='tight')
plt.close(fig)
img = Image(plot_path, width=5*inch, height=4*inch)
story.append(img)
# Build PDF
doc.build(story)
print(f"✅ PDF report saved to: {output_path}")
return output_path
# Usage
create_analysis_report(adata, "my_analysis_report.pdf")
Best Practices
- Page Size: Use
letter(US) orA4(international) for standard documents - Margins: SimpleDocTemplate has default margins (1 inch); adjust with
leftMargin,rightMargin, etc. - Images: Save matplotlib figures at 150-300 DPI for good quality
- Tables: Keep column counts reasonable (4-6 columns max for readability)
- File Cleanup: Delete temporary image files after PDF creation
- Memory: For large documents, build in sections to manage memory
Advanced Features
Custom Page Header/Footer
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
def add_header_footer(canvas_obj, doc):
canvas_obj.saveState()
# Header
canvas_obj.setFont('Helvetica', 9)
canvas_obj.drawString(inch, letter[1] - 0.5*inch, "Analysis Report")
# Footer
canvas_obj.drawString(inch, 0.5*inch, f"Page {doc.page}")
canvas_obj.restoreState()
doc = SimpleDocTemplate(pdf_filename, pagesize=letter)
doc.build(story, onFirstPage=add_header_footer, onLaterPages=add_header_footer)
Multi-Column Layout
from reportlab.platypus import Frame, PageTemplate
frame1 = Frame(doc.leftMargin, doc.bottomMargin, doc.width/2-6, doc.height, id='col1')
frame2 = Frame(doc.leftMargin+doc.width/2+6, doc.bottomMargin, doc.width/2-6, doc.height, id='col2')
doc.addPageTemplates([PageTemplate(id='TwoCol', frames=[frame1, frame2])])
Color-Coded Tables
# Highlight significant results
for i, row in enumerate(deg_results):
if row['qvalue'] < 0.05:
table.setStyle(TableStyle([
('BACKGROUND', (0, i+1), (-1, i+1), colors.yellow)
]))
Common Use Cases
QC Report
qc_metrics = {
'Total Cells': adata.n_obs,
'Median Genes/Cell': int(adata.obs['n_genes'].median()),
'Median UMIs/Cell': int(adata.obs['n_counts'].median()),
'Mean Mito %': f"{adata.obs['percent_mito'].mean():.2f}%"
}
table_data = [['Metric', 'Value']] + [[k, str(v)] for k, v in qc_metrics.items()]
# ... create table as shown above
DEG Summary Table
# Top 10 upregulated genes
top_genes = deg_df.nlargest(10, 'log2FC')[['gene', 'log2FC', 'qvalue']]
table_data = [['Gene', 'log2FC', 'Q-value']]
for _, row in top_genes.iterrows():
table_data.append([row['gene'], f"{row['log2FC']:.2f}", f"{row['qvalue']:.2e}"])
Troubleshooting
Issue: "reportlab not found"
Solution:
import subprocess
subprocess.check_call(['pip', 'install', 'reportlab'])
Issue: "Image not found"
Solution: Ensure image path is correct and file exists before adding to PDF:
import os
if os.path.exists(plot_filename):
img = Image(plot_filename, width=4*inch, height=3*inch)
story.append(img)
Issue: "Table exceeds page width"
Solution: Reduce column widths or font size:
table = Table(data, colWidths=[1.5*inch, 1.5*inch, 2*inch])
table.setStyle(TableStyle([('FONTSIZE', (0, 0), (-1, -1), 8)]))
Technical Notes
- Library: Uses
reportlab(pure Python, widely supported) - Execution: Runs locally in the agent's sandbox
- Compatibility: Works with ALL LLM providers (GPT, Gemini, Claude, DeepSeek, Qwen, etc.)
- File Size: Text-heavy PDFs are small (<1MB); image-heavy PDFs can be 5-20MB
- Performance: Typical report generation takes 1-3 seconds
References
- reportlab documentation: https://www.reportlab.com/docs/reportlab-userguide.pdf
- reportlab platypus guide: https://www.reportlab.com/software/opensource/rl-toolkit/guide/
GitHub Repository
Related Skills
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
