Back to Skills

development-assistant

RobThePCGuy
Updated Today
34 views
2
2
View on GitHub
Metamcpdesign

About

This Claude skill provides expert guidance for extending the Claude Patent Creator system, specifically for adding new MCP tools, analyzers, and features. It offers structured workflows and best practices for implementing code, validation, testing, and documentation. Developers should use it when working on MCP integrations, configuration options, or performance optimizations within the system.

Documentation

Development Assistant Skill

Expert system for developing and extending the Claude Patent Creator. Guides through adding new MCP tools, analyzers, configuration options, and features while following best practices and existing patterns.

When to Use This Skill

Activate when adding MCP tools, analyzers, configuration options, BigQuery queries, slash commands, or implementing performance optimizations.

Development Workflow

Feature Request -> Planning -> Implementation (Code + Validation + Monitoring + Tests) -> Testing -> Documentation -> Integration

Adding New MCP Tools

Quick Start:

  1. Define inputs, outputs, dependencies
  2. Create Pydantic model in mcp_server/validation.py
  3. Add tool function in mcp_server/server.py with decorators
  4. Create test script in scripts/
  5. Update CLAUDE.md

Key Decorators:

@mcp.tool()                    # Register as MCP tool
@validate_input(YourInput)     # Pydantic validation
@track_performance             # Performance monitoring

Template:

def your_tool(param: str, optional: int = 10) -> dict:
    """Comprehensive docstring (Claude sees this).

    Args:
        param: Description
        optional: Description with default

    Returns:
        Dictionary containing: key1, key2, key3
    """
    # Implementation
    return {"result": "data"}

Adding New Analyzers

Overview: Analyzers inherit from BaseAnalyzer and check USPTO compliance.

Minimal Example:

from mcp_server.analyzer_base import BaseAnalyzer

class YourAnalyzer(BaseAnalyzer):
    def __init__(self):
        super().__init__()
        self.mpep_sections = ["608", "2173"]

    def analyze(self, content: str) -> dict:
        issues = []
        if violation:
            issues.append({
                "type": "violation_name",
                "severity": "critical",
                "mpep_citation": "MPEP 608",
                "recommendation": "Fix description"
            })
        return {"compliant": len(issues) == 0, "issues": issues}

Adding Configuration Options

Use Pydantic settings in mcp_server/config.py:

# In config.py
class AppSettings(BaseSettings):
    enable_feature_x: bool = Field(default=False, description="Enable X")

# In your code
from mcp_server.config import get_settings
if get_settings().enable_feature_x:
    # Feature enabled

Adding Performance Monitoring

@track_performance
def your_function(data):
    with OperationTimer("step1"):
        result1 = step1(data)
    with OperationTimer("step2"):
        result2 = step2(result1)
    return result2

Modifying RAG Search Pipeline

Pipeline: Query -> HyDE -> Vector+BM25 -> RRF -> Reranking -> Results

Customization Points: Query expansion, custom scoring, filtering, reranking strategies

Adding New Slash Commands

  1. Create .claude/commands/your-command.md
  2. Add frontmatter: description, model
  3. Write workflow instructions
  4. Restart Claude Code

Template:

---
description: Brief command description
model: claude-sonnet-4-5-20250929
---

# Command Name

## When to Use
- Use case 1

## How It Works
Step 1: ...

Development Best Practices

  1. Follow existing patterns
  2. Use type hints
  3. Write docstrings (Google style)
  4. Handle errors gracefully
  5. Validate inputs (Pydantic)
  6. Log operations
  7. Monitor performance

Common Development Tasks

Add BigQuery Query: Add method in mcp_server/bigquery_search.py

Add Validation Rule:

class YourInput(BaseModel):
    field: str

    @field_validator("field")
    @classmethod
    def validate_field(cls, v):
        if not meets_requirement(v):
            raise ValueError("Error message")
        return v

Add Logging:

from mcp_server.logging_config import get_logger
logger = get_logger()
logger.info("event_name", extra={"context": "data"})

Quick Reference: File Locations

TaskPrimary FileRelated Files
Add MCP toolmcp_server/server.pymcp_server/validation.py
Add analyzermcp_server/your_analyzer.pymcp_server/analyzer_base.py
Add configmcp_server/config.py.env, CLAUDE.md
Add BigQuery querymcp_server/bigquery_search.py-
Add testscripts/test_your_feature.py-

Key Patterns

MCP Tool Pattern:

@mcp.tool()
@validate_input(InputModel)
@track_performance
def tool_name(param: type) -> dict:
    """Docstring visible to Claude."""
    from module import Component
    if invalid:
        return {"error": "message"}
    result = process(param)
    return {"key": "value"}

Analyzer Pattern:

class YourAnalyzer(BaseAnalyzer):
    def analyze(self, content: str) -> dict:
        issues = []
        issues.extend(self._check_x(content))
        return {
            "compliant": len(issues) == 0,
            "issues": issues,
            "recommendations": self._generate_recommendations(issues)
        }

Quick Install

/plugin add https://github.com/RobThePCGuy/Claude-Patent-Creator/tree/main/development-assistant

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

RobThePCGuy/Claude-Patent-Creator
Path: skills/development-assistant
bigqueryclaude-codeclaude-code-pluginfaissmcp-servermpep

Related Skills

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

Algorithmic Art Generation

Meta

This skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.

View skill

webapp-testing

Testing

This Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.

View skill

requesting-code-review

Design

This skill dispatches a code-reviewer subagent to analyze code changes against requirements before proceeding. It should be used after completing tasks, implementing major features, or before merging to main. The review helps catch issues early by comparing the current implementation with the original plan.

View skill