Regression Modeling
About
This skill enables developers to build predictive models for continuous value forecasting and relationship analysis. It supports multiple regression techniques including linear, polynomial, and regularized methods (Ridge, Lasso, ElasticNet) to handle various data patterns and prevent overfitting. Use it when you need to quantify variable relationships, forecast trends, or predict numerical outcomes with standard metrics like R² and RMSE for evaluation.
Documentation
Regression Modeling
Regression modeling predicts continuous target values based on input features, establishing quantitative relationships between variables for forecasting and analysis.
Regression Types
- Linear Regression: Straight-line fit to data
- Polynomial Regression: Non-linear relationships
- Ridge (L2): Regularization to prevent overfitting
- Lasso (L1): Feature selection through regularization
- ElasticNet: Combines Ridge and Lasso
- Robust Regression: Resistant to outliers
Key Metrics
- R² Score: Proportion of variance explained
- RMSE: Root Mean Squared Error
- MAE: Mean Absolute Error
- AIC/BIC: Model comparison criteria
Implementation with Python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import (
LinearRegression, Ridge, Lasso, ElasticNet, HuberRegressor
)
from sklearn.preprocessing import PolynomialFeatures, StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
import seaborn as sns
# Generate sample data
np.random.seed(42)
X = np.random.uniform(0, 100, 200).reshape(-1, 1)
y = 2.5 * X.squeeze() + 30 + np.random.normal(0, 50, 200)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Linear Regression
lr_model = LinearRegression()
lr_model.fit(X_train, y_train)
y_pred_lr = lr_model.predict(X_test)
print("Linear Regression:")
print(f" R² Score: {r2_score(y_test, y_pred_lr):.4f}")
print(f" RMSE: {np.sqrt(mean_squared_error(y_test, y_pred_lr)):.4f}")
print(f" Coefficient: {lr_model.coef_[0]:.4f}")
print(f" Intercept: {lr_model.intercept_:.4f}")
# Polynomial Regression (degree 2)
poly = PolynomialFeatures(degree=2)
X_train_poly = poly.fit_transform(X_train)
X_test_poly = poly.transform(X_test)
poly_model = LinearRegression()
poly_model.fit(X_train_poly, y_train)
y_pred_poly = poly_model.predict(X_test_poly)
print("\nPolynomial Regression (degree=2):")
print(f" R² Score: {r2_score(y_test, y_pred_poly):.4f}")
print(f" RMSE: {np.sqrt(mean_squared_error(y_test, y_pred_poly)):.4f}")
# Ridge Regression (L2 regularization)
ridge_model = Ridge(alpha=1.0)
ridge_model.fit(X_train, y_train)
y_pred_ridge = ridge_model.predict(X_test)
print("\nRidge Regression (alpha=1.0):")
print(f" R² Score: {r2_score(y_test, y_pred_ridge):.4f}")
print(f" RMSE: {np.sqrt(mean_squared_error(y_test, y_pred_ridge)):.4f}")
# Lasso Regression (L1 regularization)
lasso_model = Lasso(alpha=0.1)
lasso_model.fit(X_train, y_train)
y_pred_lasso = lasso_model.predict(X_test)
print("\nLasso Regression (alpha=0.1):")
print(f" R² Score: {r2_score(y_test, y_pred_lasso):.4f}")
print(f" RMSE: {np.sqrt(mean_squared_error(y_test, y_pred_lasso)):.4f}")
# ElasticNet Regression
elastic_model = ElasticNet(alpha=0.1, l1_ratio=0.5)
elastic_model.fit(X_train, y_train)
y_pred_elastic = elastic_model.predict(X_test)
print("\nElasticNet Regression:")
print(f" R² Score: {r2_score(y_test, y_pred_elastic):.4f}")
print(f" RMSE: {np.sqrt(mean_squared_error(y_test, y_pred_elastic)):.4f}")
# Robust Regression (resistant to outliers)
huber_model = HuberRegressor(max_iter=1000, alpha=0.1)
huber_model.fit(X_train, y_train)
y_pred_huber = huber_model.predict(X_test)
print("\nHuber Regression (Robust):")
print(f" R² Score: {r2_score(y_test, y_pred_huber):.4f}")
print(f" RMSE: {np.sqrt(mean_squared_error(y_test, y_pred_huber)):.4f}")
# Visualization
fig, axes = plt.subplots(2, 3, figsize=(15, 8))
models_data = [
(X_test, y_test, y_pred_lr, 'Linear'),
(X_test_poly, y_test, y_pred_poly, 'Polynomial (deg=2)'),
(X_test, y_test, y_pred_ridge, 'Ridge'),
(X_test, y_test, y_pred_lasso, 'Lasso'),
(X_test, y_test, y_pred_elastic, 'ElasticNet'),
(X_test, y_test, y_pred_huber, 'Huber'),
]
for idx, (X_p, y_t, y_p, label) in enumerate(models_data):
if label in ['Polynomial (deg=2)']:
x_plot = X_p[:, 1] # Use quadratic feature for plotting
else:
x_plot = X_p
ax = axes[idx // 3, idx % 3]
ax.scatter(x_plot, y_t, alpha=0.5, label='Actual')
ax.scatter(x_plot, y_p, alpha=0.5, color='red', label='Predicted')
ax.set_title(f'{label}\nR²={r2_score(y_t, y_p):.4f}')
ax.legend()
ax.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
# Residual analysis
fig, axes = plt.subplots(1, 2, figsize=(12, 4))
residuals = y_test - y_pred_lr
axes[0].scatter(y_pred_lr, residuals, alpha=0.5)
axes[0].axhline(y=0, color='r', linestyle='--')
axes[0].set_title('Residual Plot')
axes[0].set_xlabel('Fitted Values')
axes[0].set_ylabel('Residuals')
axes[1].hist(residuals, bins=20, edgecolor='black')
axes[1].set_title('Residuals Distribution')
axes[1].set_xlabel('Residuals')
axes[1].set_ylabel('Frequency')
plt.tight_layout()
plt.show()
# Cross-validation
cv_scores = cross_val_score(LinearRegression(), X, y, cv=5, scoring='r2')
print(f"\nCross-validation R² scores: {cv_scores}")
print(f"Mean CV R²: {cv_scores.mean():.4f} (+/- {cv_scores.std():.4f})")
# Regularization parameter tuning
alphas = np.logspace(-3, 3, 100)
ridge_scores = []
for alpha in alphas:
ridge = Ridge(alpha=alpha)
scores = cross_val_score(ridge, X_train, y_train, cv=5, scoring='r2')
ridge_scores.append(scores.mean())
best_alpha_idx = np.argmax(ridge_scores)
best_alpha = alphas[best_alpha_idx]
plt.figure(figsize=(10, 5))
plt.semilogx(alphas, ridge_scores)
plt.axvline(x=best_alpha, color='red', linestyle='--', label=f'Best alpha={best_alpha:.4f}')
plt.xlabel('Alpha (Regularization Strength)')
plt.ylabel('Cross-validation R² Score')
plt.title('Ridge Regression: Alpha Tuning')
plt.legend()
plt.grid(True, alpha=0.3)
plt.show()
# Feature importance (coefficients)
if hasattr(lr_model, 'coef_'):
print(f"\nModel Coefficients: {lr_model.coef_}")
# Additional evaluation and diagnostics
# Model prediction intervals
from scipy import stats as sp_stats
predictions = lr_model.predict(X_test)
residuals = y_test - predictions
mse = np.mean(residuals**2)
rmse = np.sqrt(mse)
# Prediction intervals (95%)
n = len(X_test)
p = X_test.shape[1]
dof = n - p - 1
t_val = sp_stats.t.ppf(0.975, dof)
margin = t_val * np.sqrt(mse * (1 + 1/n))
pred_intervals = np.column_stack([
predictions - margin,
predictions + margin
])
print(f"\nPrediction Intervals (95%):")
print(f"First prediction: {predictions[0]:.2f} [{pred_intervals[0, 0]:.2f}, {pred_intervals[0, 1]:.2f}]")
# Variance inflation factors for multicollinearity
from statsmodels.stats.outliers_influence import variance_inflation_factor
vif_data = pd.DataFrame()
vif_data["Feature"] = X_test.columns if hasattr(X_test, 'columns') else range(X_test.shape[1])
try:
vif_data["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
print("\nVariance Inflation Factor (VIF):")
print(vif_data)
except:
print("VIF calculation skipped (insufficient features)")
# Prediction by group/segment
if hasattr(X_test, 'columns'):
segment_results = {}
for feat in X_test.columns[:2]:
q1, q3 = X_test[feat].quantile([0.25, 0.75])
low = X_test[X_test[feat] <= q1]
high = X_test[X_test[feat] >= q3]
if len(low) > 0 and len(high) > 0:
low_pred_rmse = np.sqrt(np.mean((y_test[low.index] - lr_model.predict(low))**2))
high_pred_rmse = np.sqrt(np.mean((y_test[high.index] - lr_model.predict(high))**2))
segment_results[feat] = {
'Low RMSE': low_pred_rmse,
'High RMSE': high_pred_rmse,
}
if segment_results:
print(f"\nSegment Performance:")
for feat, results in segment_results.items():
print(f" {feat}: Low={results['Low RMSE']:.2f}, High={results['High RMSE']:.2f}")
print("\nRegression model evaluation complete!")
Assumption Checking
- Linearity: Relationship is linear
- Independence: Observations are independent
- Homoscedasticity: Constant variance of errors
- Normality: Errors are normally distributed
- No multicollinearity: Features not highly correlated
Model Selection
- Simple data: Linear regression
- Non-linear patterns: Polynomial regression
- Many features: Lasso or ElasticNet
- Outliers: Robust regression
- Prevent overfitting: Ridge or ElasticNet
Deliverables
- Fitted models with coefficients
- R² and RMSE metrics
- Residual plots and analysis
- Cross-validation results
- Regularization parameter tuning curves
- Model comparison summary
- Predictions with confidence intervals
Quick Install
/plugin add https://github.com/aj-geddes/useful-ai-prompts/tree/main/regression-modelingCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
Algorithmic Art Generation
MetaThis skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.
webapp-testing
TestingThis Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.
requesting-code-review
DesignThis skill dispatches a code-reviewer subagent to analyze code changes against requirements before proceeding. It should be used after completing tasks, implementing major features, or before merging to main. The review helps catch issues early by comparing the current implementation with the original plan.
