Back to Skills

backup-disaster-recovery

aj-geddes
Updated Today
22 views
7
7
View on GitHub
Otherapidata

About

This skill helps developers implement backup strategies and disaster recovery plans to protect critical infrastructure and data. It covers data protection, business continuity planning, and recovery time optimization for scenarios like point-in-time recovery and cross-region failover. Use it when designing comprehensive data protection solutions and ensuring rapid recovery from infrastructure failures.

Documentation

Backup and Disaster Recovery

Overview

Design and implement comprehensive backup and disaster recovery strategies to ensure data protection, business continuity, and rapid recovery from infrastructure failures.

When to Use

  • Data protection and compliance
  • Business continuity planning
  • Disaster recovery planning
  • Point-in-time recovery
  • Cross-region failover
  • Data migration
  • Compliance and audit requirements
  • Recovery time objective (RTO) optimization

Implementation Examples

1. Database Backup Configuration

# postgres-backup-cronjob.yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: backup-script
  namespace: databases
data:
  backup.sh: |
    #!/bin/bash
    set -euo pipefail

    BACKUP_DIR="/backups/postgresql"
    RETENTION_DAYS=30
    DB_HOST="${POSTGRES_HOST}"
    DB_PORT="${POSTGRES_PORT:-5432}"
    DB_USER="${POSTGRES_USER}"
    DB_PASSWORD="${POSTGRES_PASSWORD}"

    export PGPASSWORD="$DB_PASSWORD"

    # Create backup directory
    mkdir -p "$BACKUP_DIR"

    # Full backup
    BACKUP_FILE="$BACKUP_DIR/full-$(date +%Y%m%d-%H%M%S).sql"
    echo "Starting backup to $BACKUP_FILE"
    pg_dump -h "$DB_HOST" -p "$DB_PORT" -U "$DB_USER" -v \
      --format=plain --no-owner --no-privileges > "$BACKUP_FILE"

    # Compress backup
    gzip "$BACKUP_FILE"
    echo "Backup compressed: ${BACKUP_FILE}.gz"

    # Upload to S3
    aws s3 cp "${BACKUP_FILE}.gz" \
      "s3://my-backups/postgres/$(date +%Y/%m/%d)/"

    # Clean local old backups
    find "$BACKUP_DIR" -type f -mtime +7 -delete

    # Verify backup
    if pg_restore -d "postgresql://$DB_USER@$DB_HOST:$DB_PORT/test_restore" \
       "${BACKUP_FILE}.gz" --single-transaction 2>/dev/null; then
      echo "Backup verification successful"
      dropdb -h "$DB_HOST" -p "$DB_PORT" -U "$DB_USER" test_restore
    fi

    echo "Backup complete: ${BACKUP_FILE}.gz"

---
apiVersion: batch/v1
kind: CronJob
metadata:
  name: postgres-backup
  namespace: databases
spec:
  schedule: "0 2 * * *"  # 2 AM daily
  successfulJobsHistoryLimit: 3
  failedJobsHistoryLimit: 3
  jobTemplate:
    spec:
      template:
        spec:
          serviceAccountName: backup-sa
          containers:
            - name: backup
              image: postgres:15-alpine
              env:
                - name: POSTGRES_HOST
                  valueFrom:
                    secretKeyRef:
                      name: postgres-credentials
                      key: host
                - name: POSTGRES_USER
                  valueFrom:
                    secretKeyRef:
                      name: postgres-credentials
                      key: username
                - name: POSTGRES_PASSWORD
                  valueFrom:
                    secretKeyRef:
                      name: postgres-credentials
                      key: password
                - name: AWS_ACCESS_KEY_ID
                  valueFrom:
                    secretKeyRef:
                      name: aws-credentials
                      key: access-key
                - name: AWS_SECRET_ACCESS_KEY
                  valueFrom:
                    secretKeyRef:
                      name: aws-credentials
                      key: secret-key
              volumeMounts:
                - name: backup-script
                  mountPath: /backup
                - name: backup-storage
                  mountPath: /backups
              command:
                - sh
                - -c
                - apk add --no-cache aws-cli && bash /backup/backup.sh
          volumes:
            - name: backup-script
              configMap:
                name: backup-script
                defaultMode: 0755
            - name: backup-storage
              emptyDir:
                sizeLimit: 100Gi
          restartPolicy: OnFailure

2. Disaster Recovery Plan Template

# disaster-recovery-plan.yaml
---
apiVersion: v1
kind: ConfigMap
metadata:
  name: dr-procedures
  namespace: operations
data:
  dr-runbook.md: |
    # Disaster Recovery Runbook

    ## RTO and RPO Targets
    - RTO (Recovery Time Objective): 4 hours
    - RPO (Recovery Point Objective): 1 hour

    ## Pre-Disaster Checklist
    - [ ] Verify backups are current
    - [ ] Test backup restoration process
    - [ ] Verify DR site resources are provisioned
    - [ ] Confirm failover DNS is configured

    ## Primary Region Failure

    ### Detection (0-15 minutes)
    - Alerting system detects primary region down
    - Incident commander declared
    - War room opened in Slack #incidents

    ### Initial Actions (15-30 minutes)
    - Verify primary region is truly down
    - Check backup systems in secondary region
    - Validate latest backup timestamp

    ### Failover Procedure (30 minutes - 2 hours)
    1. Validate backup integrity
    2. Restore database from latest backup
    3. Update application configuration
    4. Perform DNS failover to secondary region
    5. Verify application health

    ### Recovery Steps
    1. Restore from backup: `restore-backup.sh --backup-id=latest`
    2. Update DNS: `aws route53 change-resource-record-sets --cli-input-json file://failover.json`
    3. Verify: `curl https://myapp.com/health`
    4. Run smoke tests
    5. Monitor error rates and performance

    ## Post-Disaster
    - Document timeline and RCA
    - Update runbooks
    - Schedule post-mortem
    - Test backups again

---
apiVersion: v1
kind: Secret
metadata:
  name: dr-credentials
  namespace: operations
type: Opaque
stringData:
  backup_aws_access_key: "AKIAIOSFODNN7EXAMPLE"
  backup_aws_secret_key: "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"
  dr_site_password: "secure-password-here"

3. Backup and Restore Script

#!/bin/bash
# backup-restore.sh - Complete backup and restore utilities

set -euo pipefail

BACKUP_BUCKET="s3://my-backups"
BACKUP_RETENTION_DAYS=30
TIMESTAMP=$(date +%Y%m%d_%H%M%S)

# Colors
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
NC='\033[0m'

log_info() {
    echo -e "${GREEN}[INFO]${NC} $1"
}

log_error() {
    echo -e "${RED}[ERROR]${NC} $1"
}

log_warn() {
    echo -e "${YELLOW}[WARN]${NC} $1"
}

# Backup function
backup_all() {
    local environment=$1
    log_info "Starting backup for $environment environment"

    # Backup databases
    log_info "Backing up databases..."
    for db in myapp_db analytics_db; do
        local backup_file="$BACKUP_BUCKET/$environment/databases/${db}-${TIMESTAMP}.sql.gz"
        pg_dump "$db" | gzip | aws s3 cp - "$backup_file"
        log_info "Backed up $db to $backup_file"
    done

    # Backup Kubernetes resources
    log_info "Backing up Kubernetes resources..."
    kubectl get all,configmap,secret,ingress,pvc -A -o yaml | \
        gzip | aws s3 cp - "$BACKUP_BUCKET/$environment/kubernetes-${TIMESTAMP}.yaml.gz"
    log_info "Kubernetes resources backed up"

    # Backup volumes
    log_info "Backing up persistent volumes..."
    for pvc in $(kubectl get pvc -A -o name); do
        local pvc_name=$(echo $pvc | cut -d'/' -f2)
        log_info "Backing up PVC: $pvc_name"
        kubectl exec -n default -it backup-pod -- \
            tar czf - /data | aws s3 cp - "$BACKUP_BUCKET/$environment/volumes/${pvc_name}-${TIMESTAMP}.tar.gz"
    done

    log_info "All backups completed successfully"
}

# Restore function
restore_all() {
    local environment=$1
    local backup_date=$2

    log_warn "Restoring from backup date: $backup_date"
    read -p "Are you sure? (yes/no): " confirm
    if [ "$confirm" != "yes" ]; then
        log_error "Restore cancelled"
        exit 1
    fi

    # Restore databases
    log_info "Restoring databases..."
    for db in myapp_db analytics_db; do
        local backup_file="$BACKUP_BUCKET/$environment/databases/${db}-${backup_date}.sql.gz"
        log_info "Restoring $db from $backup_file"
        aws s3 cp "$backup_file" - | gunzip | psql "$db"
    done

    # Restore Kubernetes resources
    log_info "Restoring Kubernetes resources..."
    local k8s_backup="$BACKUP_BUCKET/$environment/kubernetes-${backup_date}.yaml.gz"
    aws s3 cp "$k8s_backup" - | gunzip | kubectl apply -f -

    log_info "Restore completed successfully"
}

# Test restore
test_restore() {
    local environment=$1

    log_info "Testing restore procedure..."

    # Get latest backup
    local latest_backup=$(aws s3 ls "$BACKUP_BUCKET/$environment/databases/" | \
        sort | tail -n 1 | awk '{print $4}')

    if [ -z "$latest_backup" ]; then
        log_error "No backups found"
        exit 1
    fi

    log_info "Testing restore from: $latest_backup"

    # Create test database
    psql -c "CREATE DATABASE test_restore_$(date +%s);"

    # Download and restore
    aws s3 cp "$BACKUP_BUCKET/$environment/databases/$latest_backup" - | \
        gunzip | psql "test_restore_$(date +%s)"

    log_info "Test restore successful"
}

# List backups
list_backups() {
    local environment=$1
    log_info "Available backups for $environment:"
    aws s3 ls "$BACKUP_BUCKET/$environment/" --recursive | grep -E "\.sql\.gz|\.yaml\.gz|\.tar\.gz"
}

# Cleanup old backups
cleanup_old_backups() {
    local environment=$1
    log_info "Cleaning up backups older than $BACKUP_RETENTION_DAYS days"

    find "$BACKUP_BUCKET/$environment" -type f -mtime "+$BACKUP_RETENTION_DAYS" -delete
    log_info "Cleanup completed"
}

# Main
main() {
    case "${1:-}" in
        backup)
            backup_all "${2:-production}"
            ;;
        restore)
            restore_all "${2:-production}" "${3:-}"
            ;;
        test)
            test_restore "${2:-production}"
            ;;
        list)
            list_backups "${2:-production}"
            ;;
        cleanup)
            cleanup_old_backups "${2:-production}"
            ;;
        *)
            echo "Usage: $0 {backup|restore|test|list|cleanup} [environment] [backup-date]"
            exit 1
            ;;
    esac
}

main "$@"

4. Cross-Region Failover

# route53-failover.yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: failover-config
  namespace: operations
data:
  failover.sh: |
    #!/bin/bash
    set -euo pipefail

    PRIMARY_REGION="us-east-1"
    SECONDARY_REGION="us-west-2"
    DOMAIN="myapp.com"
    HOSTED_ZONE_ID="Z1234567890ABC"

    echo "Initiating failover to $SECONDARY_REGION"

    # Get primary endpoint
    PRIMARY_ENDPOINT=$(aws elbv2 describe-load-balancers \
      --region "$PRIMARY_REGION" \
      --query 'LoadBalancers[0].DNSName' \
      --output text)

    # Get secondary endpoint
    SECONDARY_ENDPOINT=$(aws elbv2 describe-load-balancers \
      --region "$SECONDARY_REGION" \
      --query 'LoadBalancers[0].DNSName' \
      --output text)

    # Update Route53 to failover
    aws route53 change-resource-record-sets \
      --hosted-zone-id "$HOSTED_ZONE_ID" \
      --change-batch '{
        "Changes": [
          {
            "Action": "UPSERT",
            "ResourceRecordSet": {
              "Name": "'$DOMAIN'",
              "Type": "A",
              "TTL": 60,
              "SetIdentifier": "Primary",
              "Failover": "PRIMARY",
              "AliasTarget": {
                "HostedZoneId": "Z35SXDOTRQ7X7K",
                "DNSName": "'$PRIMARY_ENDPOINT'",
                "EvaluateTargetHealth": true
              }
            }
          },
          {
            "Action": "UPSERT",
            "ResourceRecordSet": {
              "Name": "'$DOMAIN'",
              "Type": "A",
              "TTL": 60,
              "SetIdentifier": "Secondary",
              "Failover": "SECONDARY",
              "AliasTarget": {
                "HostedZoneId": "Z35SXDOTRQ7X7K",
                "DNSName": "'$SECONDARY_ENDPOINT'",
                "EvaluateTargetHealth": false
              }
            }
          }
        ]
      }'

    echo "Failover completed"

Best Practices

✅ DO

  • Perform regular backup testing
  • Use multiple backup locations
  • Implement automated backups
  • Document recovery procedures
  • Test failover procedures regularly
  • Monitor backup completion
  • Use immutable backups
  • Encrypt backups at rest and in transit

❌ DON'T

  • Rely on a single backup location
  • Ignore backup failures
  • Store backups with production data
  • Skip testing recovery procedures
  • Over-compress backups beyond recovery speed needs
  • Forget to verify backup integrity
  • Store encryption keys with backups
  • Assume backups are automatically working

Resources

Quick Install

/plugin add https://github.com/aj-geddes/useful-ai-prompts/tree/main/backup-disaster-recovery

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

aj-geddes/useful-ai-prompts
Path: skills/backup-disaster-recovery

Related Skills

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

llamaindex

Meta

LlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.

View skill

csv-data-summarizer

Meta

This skill automatically analyzes CSV files to generate comprehensive statistical summaries and visualizations using Python's pandas and matplotlib/seaborn. It should be triggered whenever a user uploads or references CSV data without prompting for analysis preferences. The tool provides immediate insights into data structure, quality, and patterns through automated analysis and visualization.

View skill