Back to Skills

cost-optimization

lifangda
Updated Today
75 views
11
11
View on GitHub
Othergeneral

About

This Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.

Documentation

Cloud Cost Optimization

Strategies and patterns for optimizing cloud costs across AWS, Azure, and GCP.

Purpose

Implement systematic cost optimization strategies to reduce cloud spending while maintaining performance and reliability.

When to Use

  • Reduce cloud spending
  • Right-size resources
  • Implement cost governance
  • Optimize multi-cloud costs
  • Meet budget constraints

Cost Optimization Framework

1. Visibility

  • Implement cost allocation tags
  • Use cloud cost management tools
  • Set up budget alerts
  • Create cost dashboards

2. Right-Sizing

  • Analyze resource utilization
  • Downsize over-provisioned resources
  • Use auto-scaling
  • Remove idle resources

3. Pricing Models

  • Use reserved capacity
  • Leverage spot/preemptible instances
  • Implement savings plans
  • Use committed use discounts

4. Architecture Optimization

  • Use managed services
  • Implement caching
  • Optimize data transfer
  • Use lifecycle policies

AWS Cost Optimization

Reserved Instances

Savings: 30-72% vs On-Demand
Term: 1 or 3 years
Payment: All/Partial/No upfront
Flexibility: Standard or Convertible

Savings Plans

Compute Savings Plans: 66% savings
EC2 Instance Savings Plans: 72% savings
Applies to: EC2, Fargate, Lambda
Flexible across: Instance families, regions, OS

Spot Instances

Savings: Up to 90% vs On-Demand
Best for: Batch jobs, CI/CD, stateless workloads
Risk: 2-minute interruption notice
Strategy: Mix with On-Demand for resilience

S3 Cost Optimization

resource "aws_s3_bucket_lifecycle_configuration" "example" {
  bucket = aws_s3_bucket.example.id

  rule {
    id     = "transition-to-ia"
    status = "Enabled"

    transition {
      days          = 30
      storage_class = "STANDARD_IA"
    }

    transition {
      days          = 90
      storage_class = "GLACIER"
    }

    expiration {
      days = 365
    }
  }
}

Azure Cost Optimization

Reserved VM Instances

  • 1 or 3 year terms
  • Up to 72% savings
  • Flexible sizing
  • Exchangeable

Azure Hybrid Benefit

  • Use existing Windows Server licenses
  • Up to 80% savings with RI
  • Available for Windows and SQL Server

Azure Advisor Recommendations

  • Right-size VMs
  • Delete unused resources
  • Use reserved capacity
  • Optimize storage

GCP Cost Optimization

Committed Use Discounts

  • 1 or 3 year commitment
  • Up to 57% savings
  • Applies to vCPUs and memory
  • Resource-based or spend-based

Sustained Use Discounts

  • Automatic discounts
  • Up to 30% for running instances
  • No commitment required
  • Applies to Compute Engine, GKE

Preemptible VMs

  • Up to 80% savings
  • 24-hour maximum runtime
  • Best for batch workloads

Tagging Strategy

AWS Tagging

locals {
  common_tags = {
    Environment = "production"
    Project     = "my-project"
    CostCenter  = "engineering"
    Owner       = "[email protected]"
    ManagedBy   = "terraform"
  }
}

resource "aws_instance" "example" {
  ami           = "ami-12345678"
  instance_type = "t3.medium"

  tags = merge(
    local.common_tags,
    {
      Name = "web-server"
    }
  )
}

Reference: See references/tagging-standards.md

Cost Monitoring

Budget Alerts

# AWS Budget
resource "aws_budgets_budget" "monthly" {
  name              = "monthly-budget"
  budget_type       = "COST"
  limit_amount      = "1000"
  limit_unit        = "USD"
  time_period_start = "2024-01-01_00:00"
  time_unit         = "MONTHLY"

  notification {
    comparison_operator        = "GREATER_THAN"
    threshold                  = 80
    threshold_type            = "PERCENTAGE"
    notification_type         = "ACTUAL"
    subscriber_email_addresses = ["[email protected]"]
  }
}

Cost Anomaly Detection

  • AWS Cost Anomaly Detection
  • Azure Cost Management alerts
  • GCP Budget alerts

Architecture Patterns

Pattern 1: Serverless First

  • Use Lambda/Functions for event-driven
  • Pay only for execution time
  • Auto-scaling included
  • No idle costs

Pattern 2: Right-Sized Databases

Development: t3.small RDS
Staging: t3.large RDS
Production: r6g.2xlarge RDS with read replicas

Pattern 3: Multi-Tier Storage

Hot data: S3 Standard
Warm data: S3 Standard-IA (30 days)
Cold data: S3 Glacier (90 days)
Archive: S3 Deep Archive (365 days)

Pattern 4: Auto-Scaling

resource "aws_autoscaling_policy" "scale_up" {
  name                   = "scale-up"
  scaling_adjustment     = 2
  adjustment_type        = "ChangeInCapacity"
  cooldown              = 300
  autoscaling_group_name = aws_autoscaling_group.main.name
}

resource "aws_cloudwatch_metric_alarm" "cpu_high" {
  alarm_name          = "cpu-high"
  comparison_operator = "GreaterThanThreshold"
  evaluation_periods  = "2"
  metric_name         = "CPUUtilization"
  namespace           = "AWS/EC2"
  period              = "60"
  statistic           = "Average"
  threshold           = "80"
  alarm_actions       = [aws_autoscaling_policy.scale_up.arn]
}

Cost Optimization Checklist

  • Implement cost allocation tags
  • Delete unused resources (EBS, EIPs, snapshots)
  • Right-size instances based on utilization
  • Use reserved capacity for steady workloads
  • Implement auto-scaling
  • Optimize storage classes
  • Use lifecycle policies
  • Enable cost anomaly detection
  • Set budget alerts
  • Review costs weekly
  • Use spot/preemptible instances
  • Optimize data transfer costs
  • Implement caching layers
  • Use managed services
  • Monitor and optimize continuously

Tools

  • AWS: Cost Explorer, Cost Anomaly Detection, Compute Optimizer
  • Azure: Cost Management, Advisor
  • GCP: Cost Management, Recommender
  • Multi-cloud: CloudHealth, Cloudability, Kubecost

Reference Files

  • references/tagging-standards.md - Tagging conventions
  • assets/cost-analysis-template.xlsx - Cost analysis spreadsheet

Related Skills

  • terraform-module-library - For resource provisioning
  • multi-cloud-architecture - For cloud selection

Quick Install

/plugin add https://github.com/lifangda/claude-plugins/tree/main/cost-optimization

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

lifangda/claude-plugins
Path: cli-tool/skills-library/cloud-infrastructure/cost-optimization

Related Skills

work-execution-principles

Other

This Claude Skill establishes core development principles for work breakdown, scope definition, testing strategies, and dependency management. It provides a systematic approach for code reviews, planning, and architectural decisions to ensure consistent quality standards across all development activities. The skill is universally applicable to any programming language or framework when starting development work or planning implementation approaches.

View skill

Git Commit Helper

Meta

This Claude Skill generates descriptive commit messages by analyzing git diffs. It automatically follows conventional commit format with proper types like feat, fix, and docs. Use it when you need help writing commit messages or reviewing staged changes in your repository.

View skill

analyzing-dependencies

Meta

This skill analyzes project dependencies for security vulnerabilities, outdated packages, and license compliance issues. It helps developers identify potential risks in their dependencies using the dependency-checker plugin. The skill supports popular package managers including npm, pip, composer, gem, and Go modules.

View skill

subagent-driven-development

Development

This skill executes implementation plans by dispatching a fresh subagent for each independent task, with code review between tasks. It enables fast iteration while maintaining quality gates through this review process. Use it when working on mostly independent tasks within the same session to ensure continuous progress with built-in quality checks.

View skill