Scale Game
About
The Scale Game skill helps developers test systems at extreme scales (1000x bigger/smaller, instant/year-long) to expose fundamental truths hidden at normal operation. It's used when uncertain about scalability, edge cases, or validating architecture for production volumes. The technique reveals algorithmic limits, concurrency issues, and error handling adequacy by testing across dimensions like volume, speed, and users.
Documentation
Scale Game
Overview
Test your approach at extreme scales to find what breaks and what surprisingly survives.
Core principle: Extremes expose fundamental truths hidden at normal scales.
Quick Reference
| Scale Dimension | Test At Extremes | What It Reveals |
|---|---|---|
| Volume | 1 item vs 1B items | Algorithmic complexity limits |
| Speed | Instant vs 1 year | Async requirements, caching needs |
| Users | 1 user vs 1B users | Concurrency issues, resource limits |
| Duration | Milliseconds vs years | Memory leaks, state growth |
| Failure rate | Never fails vs always fails | Error handling adequacy |
Process
- Pick dimension - What could vary extremely?
- Test minimum - What if this was 1000x smaller/faster/fewer?
- Test maximum - What if this was 1000x bigger/slower/more?
- Note what breaks - Where do limits appear?
- Note what survives - What's fundamentally sound?
Examples
Example 1: Error Handling
Normal scale: "Handle errors when they occur" works fine At 1B scale: Error volume overwhelms logging, crashes system Reveals: Need to make errors impossible (type systems) or expect them (chaos engineering)
Example 2: Synchronous APIs
Normal scale: Direct function calls work At global scale: Network latency makes synchronous calls unusable Reveals: Async/messaging becomes survival requirement, not optimization
Example 3: In-Memory State
Normal duration: Works for hours/days At years: Memory grows unbounded, eventual crash Reveals: Need persistence or periodic cleanup, can't rely on memory
Red Flags You Need This
- "It works in dev" (but will it work in production?)
- No idea where limits are
- "Should scale fine" (without testing)
- Surprised by production behavior
Remember
- Extremes reveal fundamentals
- What works at one scale fails at another
- Test both directions (bigger AND smaller)
- Use insights to validate architecture early
Quick Install
/plugin add https://github.com/Elios-FPT/EliosCodePracticeService/tree/main/scale-gameCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
go-test
MetaThe go-test skill provides expertise in Go's standard testing package and best practices. It helps developers implement table-driven tests, subtests, benchmarks, and coverage strategies while following Go conventions. Use it when writing test files, creating mocks, detecting race conditions, or organizing integration tests in Go projects.
generating-unit-tests
MetaThis skill automatically generates comprehensive unit tests from source code when developers request test creation. It supports multiple testing frameworks like Jest, pytest, and JUnit, intelligently detecting the appropriate one or using a specified framework. Use it when asking to "generate tests," "create unit tests," or using the "gut" shortcut with file paths.
golang
MetaThis skill provides expert assistance for writing idiomatic Go code, ensuring adherence to official conventions and best practices. It specializes in concurrent programming, interface design, error handling, and performance optimization. Use it when working on Go files, goroutines, API design, or managing modules and dependencies.
