llava
About
LLaVA is an open-source vision-language model that enables conversational image analysis through visual question answering and multi-turn image chat. It combines CLIP vision encoding with language models like Vicuna to support vision-language chatbots and image understanding tasks. Developers should use it for building applications requiring conversational AI with image input capabilities.
Quick Install
Claude Code
Recommended/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLsgit clone https://github.com/zechenzhangAGI/AI-research-SKILLs.git ~/.claude/skills/llavaCopy and paste this command in Claude Code to install this skill
Documentation
LLaVA - Large Language and Vision Assistant
Open-source vision-language model for conversational image understanding.
When to use LLaVA
Use when:
- Building vision-language chatbots
- Visual question answering (VQA)
- Image description and captioning
- Multi-turn image conversations
- Visual instruction following
- Document understanding with images
Metrics:
- 23,000+ GitHub stars
- GPT-4V level capabilities (targeted)
- Apache 2.0 License
- Multiple model sizes (7B-34B params)
Use alternatives instead:
- GPT-4V: Highest quality, API-based
- CLIP: Simple zero-shot classification
- BLIP-2: Better for captioning only
- Flamingo: Research, not open-source
Quick start
Installation
# Clone repository
git clone https://github.com/haotian-liu/LLaVA
cd LLaVA
# Install
pip install -e .
Basic usage
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from llava.conversation import conv_templates
from PIL import Image
import torch
# Load model
model_path = "liuhaotian/llava-v1.5-7b"
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path=model_path,
model_base=None,
model_name=get_model_name_from_path(model_path)
)
# Load image
image = Image.open("image.jpg")
image_tensor = process_images([image], image_processor, model.config)
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
# Create conversation
conv = conv_templates["llava_v1"].copy()
conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\nWhat is in this image?")
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
# Generate response
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor,
do_sample=True,
temperature=0.2,
max_new_tokens=512
)
response = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
print(response)
Available models
| Model | Parameters | VRAM | Quality |
|---|---|---|---|
| LLaVA-v1.5-7B | 7B | ~14 GB | Good |
| LLaVA-v1.5-13B | 13B | ~28 GB | Better |
| LLaVA-v1.6-34B | 34B | ~70 GB | Best |
# Load different models
model_7b = "liuhaotian/llava-v1.5-7b"
model_13b = "liuhaotian/llava-v1.5-13b"
model_34b = "liuhaotian/llava-v1.6-34b"
# 4-bit quantization for lower VRAM
load_4bit = True # Reduces VRAM by ~4×
CLI usage
# Single image query
python -m llava.serve.cli \
--model-path liuhaotian/llava-v1.5-7b \
--image-file image.jpg \
--query "What is in this image?"
# Multi-turn conversation
python -m llava.serve.cli \
--model-path liuhaotian/llava-v1.5-7b \
--image-file image.jpg
# Then type questions interactively
Web UI (Gradio)
# Launch Gradio interface
python -m llava.serve.gradio_web_server \
--model-path liuhaotian/llava-v1.5-7b \
--load-4bit # Optional: reduce VRAM
# Access at http://localhost:7860
Multi-turn conversations
# Initialize conversation
conv = conv_templates["llava_v1"].copy()
# Turn 1
conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\nWhat is in this image?")
conv.append_message(conv.roles[1], None)
response1 = generate(conv, model, image) # "A dog playing in a park"
# Turn 2
conv.messages[-1][1] = response1 # Add previous response
conv.append_message(conv.roles[0], "What breed is the dog?")
conv.append_message(conv.roles[1], None)
response2 = generate(conv, model, image) # "Golden Retriever"
# Turn 3
conv.messages[-1][1] = response2
conv.append_message(conv.roles[0], "What time of day is it?")
conv.append_message(conv.roles[1], None)
response3 = generate(conv, model, image)
Common tasks
Image captioning
question = "Describe this image in detail."
response = ask(model, image, question)
Visual question answering
question = "How many people are in the image?"
response = ask(model, image, question)
Object detection (textual)
question = "List all the objects you can see in this image."
response = ask(model, image, question)
Scene understanding
question = "What is happening in this scene?"
response = ask(model, image, question)
Document understanding
question = "What is the main topic of this document?"
response = ask(model, document_image, question)
Training custom model
# Stage 1: Feature alignment (558K image-caption pairs)
bash scripts/v1_5/pretrain.sh
# Stage 2: Visual instruction tuning (150K instruction data)
bash scripts/v1_5/finetune.sh
Quantization (reduce VRAM)
# 4-bit quantization
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path="liuhaotian/llava-v1.5-13b",
model_base=None,
model_name=get_model_name_from_path("liuhaotian/llava-v1.5-13b"),
load_4bit=True # Reduces VRAM ~4×
)
# 8-bit quantization
load_8bit=True # Reduces VRAM ~2×
Best practices
- Start with 7B model - Good quality, manageable VRAM
- Use 4-bit quantization - Reduces VRAM significantly
- GPU required - CPU inference extremely slow
- Clear prompts - Specific questions get better answers
- Multi-turn conversations - Maintain conversation context
- Temperature 0.2-0.7 - Balance creativity/consistency
- max_new_tokens 512-1024 - For detailed responses
- Batch processing - Process multiple images sequentially
Performance
| Model | VRAM (FP16) | VRAM (4-bit) | Speed (tokens/s) |
|---|---|---|---|
| 7B | ~14 GB | ~4 GB | ~20 |
| 13B | ~28 GB | ~8 GB | ~12 |
| 34B | ~70 GB | ~18 GB | ~5 |
On A100 GPU
Benchmarks
LLaVA achieves competitive scores on:
- VQAv2: 78.5%
- GQA: 62.0%
- MM-Vet: 35.4%
- MMBench: 64.3%
Limitations
- Hallucinations - May describe things not in image
- Spatial reasoning - Struggles with precise locations
- Small text - Difficulty reading fine print
- Object counting - Imprecise for many objects
- VRAM requirements - Need powerful GPU
- Inference speed - Slower than CLIP
Integration with frameworks
LangChain
from langchain.llms.base import LLM
class LLaVALLM(LLM):
def _call(self, prompt, stop=None):
# Custom LLaVA inference
return response
llm = LLaVALLM()
Gradio App
import gradio as gr
def chat(image, text, history):
response = ask_llava(model, image, text)
return response
demo = gr.ChatInterface(
chat,
additional_inputs=[gr.Image(type="pil")],
title="LLaVA Chat"
)
demo.launch()
Resources
- GitHub: https://github.com/haotian-liu/LLaVA ⭐ 23,000+
- Paper: https://arxiv.org/abs/2304.08485
- Demo: https://llava.hliu.cc
- Models: https://huggingface.co/liuhaotian
- License: Apache 2.0
GitHub Repository
Related Skills
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
Algorithmic Art Generation
MetaThis skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.
webapp-testing
TestingThis Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.
