generating-test-data
About
This Claude Skill generates realistic test data including edge cases and boundary conditions for fixtures and test databases. It's triggered with phrases like "generate test data" or "create fixtures" and provides tools for reading, writing, and managing test environments. Developers should use it when setting up comprehensive test scenarios that require diverse data samples.
Quick Install
Claude Code
Recommended/plugin add https://github.com/jeremylongshore/claude-code-plugins-plusgit clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/generating-test-dataCopy and paste this command in Claude Code to install this skill
Documentation
Prerequisites
Before using this skill, ensure you have:
- Test environment configured and accessible
- Required testing tools and frameworks installed
- Test data and fixtures prepared
- Appropriate permissions for test execution
- Network connectivity if testing external services
Instructions
Step 1: Prepare Test Environment
Set up the testing context:
- Use Read tool to examine configuration from {baseDir}/config/
- Validate test prerequisites are met
- Initialize test framework and load dependencies
- Configure test parameters and thresholds
Step 2: Execute Tests
Run the test suite:
- Use Bash(test:data-*) to invoke test framework
- Monitor test execution progress
- Capture test outputs and metrics
- Handle test failures and error conditions
Step 3: Analyze Results
Process test outcomes:
- Identify passed and failed tests
- Calculate success rate and performance metrics
- Detect patterns in failures
- Generate insights for improvement
Step 4: Generate Report
Document findings in {baseDir}/test-reports/:
- Test execution summary
- Detailed failure analysis
- Performance benchmarks
- Recommendations for fixes
Output
The skill generates comprehensive test results:
Test Summary
- Total tests executed
- Pass/fail counts and percentage
- Execution time metrics
- Resource utilization stats
Detailed Results
Each test includes:
- Test name and identifier
- Execution status (pass/fail/skip)
- Actual vs. expected outcomes
- Error messages and stack traces
Metrics and Analysis
- Code coverage percentages
- Performance benchmarks
- Trend analysis across runs
- Quality gate compliance status
Error Handling
Common issues and solutions:
Environment Setup Failures
- Error: Test environment not properly configured
- Solution: Verify configuration files; check environment variables; ensure dependencies are installed
Test Execution Timeouts
- Error: Tests exceeded maximum execution time
- Solution: Increase timeout thresholds; optimize slow tests; parallelize test execution
Resource Exhaustion
- Error: Insufficient memory or disk space during testing
- Solution: Clean up temporary files; reduce concurrent test workers; increase resource allocation
Dependency Issues
- Error: Required services or databases unavailable
- Solution: Verify service health; check network connectivity; use mocks if services are down
Resources
Testing Tools
- Industry-standard testing frameworks for your language/platform
- CI/CD integration guides and plugins
- Test automation best practices documentation
Best Practices
- Maintain test isolation and independence
- Use meaningful test names and descriptions
- Keep tests fast and focused
- Implement proper setup and teardown
- Version control test artifacts
- Run tests in CI/CD pipelines
GitHub Repository
Related Skills
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
webapp-testing
TestingThis Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.
finishing-a-development-branch
TestingThis skill helps developers complete finished work by verifying tests pass and then presenting structured integration options. It guides the workflow for merging, creating PRs, or cleaning up branches after implementation is done. Use it when your code is ready and tested to systematically finalize the development process.
csv-data-summarizer
MetaThis skill automatically analyzes CSV files to generate comprehensive statistical summaries and visualizations using Python's pandas and matplotlib/seaborn. It should be triggered whenever a user uploads or references CSV data without prompting for analysis preferences. The tool provides immediate insights into data structure, quality, and patterns through automated analysis and visualization.
