Back to Skills

databases

mrgoonie
Updated Today
20 views
738
118
738
View on GitHub
Designwordapidesigndata

About

This Claude Skill provides unified expertise for working with both MongoDB (document database) and PostgreSQL (relational database). Use it for designing schemas, writing queries and aggregations, optimizing performance, and managing database operations. It's ideal for developers handling database design, migrations, production administration, or choosing between document vs relational approaches.

Documentation

Databases Skill

Unified guide for working with MongoDB (document-oriented) and PostgreSQL (relational) databases. Choose the right database for your use case and master both systems.

When to Use This Skill

Use when:

  • Designing database schemas and data models
  • Writing queries (SQL or MongoDB query language)
  • Building aggregation pipelines or complex joins
  • Optimizing indexes and query performance
  • Implementing database migrations
  • Setting up replication, sharding, or clustering
  • Configuring backups and disaster recovery
  • Managing database users and permissions
  • Analyzing slow queries and performance issues
  • Administering production database deployments

Database Selection Guide

Choose MongoDB When:

  • Schema flexibility: frequent structure changes, heterogeneous data
  • Document-centric: natural JSON/BSON data model
  • Horizontal scaling: need to shard across multiple servers
  • High write throughput: IoT, logging, real-time analytics
  • Nested/hierarchical data: embedded documents preferred
  • Rapid prototyping: schema evolution without migrations

Best for: Content management, catalogs, IoT time series, real-time analytics, mobile apps, user profiles

Choose PostgreSQL When:

  • Strong consistency: ACID transactions critical
  • Complex relationships: many-to-many joins, referential integrity
  • SQL requirement: team expertise, reporting tools, BI systems
  • Data integrity: strict schema validation, constraints
  • Mature ecosystem: extensive tooling, extensions
  • Complex queries: window functions, CTEs, analytical workloads

Best for: Financial systems, e-commerce transactions, ERP, CRM, data warehousing, analytics

Both Support:

  • JSON/JSONB storage and querying
  • Full-text search capabilities
  • Geospatial queries and indexing
  • Replication and high availability
  • ACID transactions (MongoDB 4.0+)
  • Strong security features

Quick Start

MongoDB Setup

# Atlas (Cloud) - Recommended
# 1. Sign up at mongodb.com/atlas
# 2. Create M0 free cluster
# 3. Get connection string

# Connection
mongodb+srv://user:[email protected]/db

# Shell
mongosh "mongodb+srv://cluster.mongodb.net/mydb"

# Basic operations
db.users.insertOne({ name: "Alice", age: 30 })
db.users.find({ age: { $gte: 18 } })
db.users.updateOne({ name: "Alice" }, { $set: { age: 31 } })
db.users.deleteOne({ name: "Alice" })

PostgreSQL Setup

# Ubuntu/Debian
sudo apt-get install postgresql postgresql-contrib

# Start service
sudo systemctl start postgresql

# Connect
psql -U postgres -d mydb

# Basic operations
CREATE TABLE users (id SERIAL PRIMARY KEY, name TEXT, age INT);
INSERT INTO users (name, age) VALUES ('Alice', 30);
SELECT * FROM users WHERE age >= 18;
UPDATE users SET age = 31 WHERE name = 'Alice';
DELETE FROM users WHERE name = 'Alice';

Common Operations

Create/Insert

// MongoDB
db.users.insertOne({ name: "Bob", email: "[email protected]" })
db.users.insertMany([{ name: "Alice" }, { name: "Charlie" }])
-- PostgreSQL
INSERT INTO users (name, email) VALUES ('Bob', '[email protected]');
INSERT INTO users (name, email) VALUES ('Alice', NULL), ('Charlie', NULL);

Read/Query

// MongoDB
db.users.find({ age: { $gte: 18 } })
db.users.findOne({ email: "[email protected]" })
-- PostgreSQL
SELECT * FROM users WHERE age >= 18;
SELECT * FROM users WHERE email = '[email protected]' LIMIT 1;

Update

// MongoDB
db.users.updateOne({ name: "Bob" }, { $set: { age: 25 } })
db.users.updateMany({ status: "pending" }, { $set: { status: "active" } })
-- PostgreSQL
UPDATE users SET age = 25 WHERE name = 'Bob';
UPDATE users SET status = 'active' WHERE status = 'pending';

Delete

// MongoDB
db.users.deleteOne({ name: "Bob" })
db.users.deleteMany({ status: "deleted" })
-- PostgreSQL
DELETE FROM users WHERE name = 'Bob';
DELETE FROM users WHERE status = 'deleted';

Indexing

// MongoDB
db.users.createIndex({ email: 1 })
db.users.createIndex({ status: 1, createdAt: -1 })
-- PostgreSQL
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_users_status_created ON users(status, created_at DESC);

Reference Navigation

MongoDB References

PostgreSQL References

Python Utilities

Database utility scripts in scripts/:

  • db_migrate.py - Generate and apply migrations for both databases
  • db_backup.py - Backup and restore MongoDB and PostgreSQL
  • db_performance_check.py - Analyze slow queries and recommend indexes
# Generate migration
python scripts/db_migrate.py --db mongodb --generate "add_user_index"

# Run backup
python scripts/db_backup.py --db postgres --output /backups/

# Check performance
python scripts/db_performance_check.py --db mongodb --threshold 100ms

Key Differences Summary

FeatureMongoDBPostgreSQL
Data ModelDocument (JSON/BSON)Relational (Tables/Rows)
SchemaFlexible, dynamicStrict, predefined
Query LanguageMongoDB Query LanguageSQL
Joins$lookup (limited)Native, optimized
TransactionsMulti-document (4.0+)Native ACID
ScalingHorizontal (sharding)Vertical (primary), Horizontal (extensions)
IndexesSingle, compound, text, geo, etcB-tree, hash, GiST, GIN, etc

Best Practices

MongoDB:

  • Use embedded documents for 1-to-few relationships
  • Reference documents for 1-to-many or many-to-many
  • Index frequently queried fields
  • Use aggregation pipeline for complex transformations
  • Enable authentication and TLS in production
  • Use Atlas for managed hosting

PostgreSQL:

  • Normalize schema to 3NF, denormalize for performance
  • Use foreign keys for referential integrity
  • Index foreign keys and frequently filtered columns
  • Use EXPLAIN ANALYZE to optimize queries
  • Regular VACUUM and ANALYZE maintenance
  • Connection pooling (pgBouncer) for web apps

Resources

Quick Install

/plugin add https://github.com/mrgoonie/claudekit-skills/tree/main/databases

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

mrgoonie/claudekit-skills
Path: .claude/skills/databases

Related Skills

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

Algorithmic Art Generation

Meta

This skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.

View skill

webapp-testing

Testing

This Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.

View skill