Back to Skills

llm-evaluation

camoneart
Updated Today
29 views
2
2
View on GitHub
Testingaitestingautomation

About

The llm-evaluation skill enables developers to implement comprehensive testing for LLM applications using automated metrics, human feedback, and benchmarking. It is used to systematically measure performance, compare models and prompts, and detect regressions before deployment. This helps establish baselines, validate improvements, and build confidence in production AI systems.

Documentation

LLM Evaluation

Master comprehensive evaluation strategies for LLM applications, from automated metrics to human evaluation and A/B testing.

When to Use This Skill

  • Measuring LLM application performance systematically
  • Comparing different models or prompts
  • Detecting performance regressions before deployment
  • Validating improvements from prompt changes
  • Building confidence in production systems
  • Establishing baselines and tracking progress over time
  • Debugging unexpected model behavior

Core Evaluation Types

1. Automated Metrics

Fast, repeatable, scalable evaluation using computed scores.

Text Generation:

  • BLEU: N-gram overlap (translation)
  • ROUGE: Recall-oriented (summarization)
  • METEOR: Semantic similarity
  • BERTScore: Embedding-based similarity
  • Perplexity: Language model confidence

Classification:

  • Accuracy: Percentage correct
  • Precision/Recall/F1: Class-specific performance
  • Confusion Matrix: Error patterns
  • AUC-ROC: Ranking quality

Retrieval (RAG):

  • MRR: Mean Reciprocal Rank
  • NDCG: Normalized Discounted Cumulative Gain
  • Precision@K: Relevant in top K
  • Recall@K: Coverage in top K

2. Human Evaluation

Manual assessment for quality aspects difficult to automate.

Dimensions:

  • Accuracy: Factual correctness
  • Coherence: Logical flow
  • Relevance: Answers the question
  • Fluency: Natural language quality
  • Safety: No harmful content
  • Helpfulness: Useful to the user

3. LLM-as-Judge

Use stronger LLMs to evaluate weaker model outputs.

Approaches:

  • Pointwise: Score individual responses
  • Pairwise: Compare two responses
  • Reference-based: Compare to gold standard
  • Reference-free: Judge without ground truth

Quick Start

from llm_eval import EvaluationSuite, Metric

# Define evaluation suite
suite = EvaluationSuite([
    Metric.accuracy(),
    Metric.bleu(),
    Metric.bertscore(),
    Metric.custom(name="groundedness", fn=check_groundedness)
])

# Prepare test cases
test_cases = [
    {
        "input": "What is the capital of France?",
        "expected": "Paris",
        "context": "France is a country in Europe. Paris is its capital."
    },
    # ... more test cases
]

# Run evaluation
results = suite.evaluate(
    model=your_model,
    test_cases=test_cases
)

print(f"Overall Accuracy: {results.metrics['accuracy']}")
print(f"BLEU Score: {results.metrics['bleu']}")

Automated Metrics Implementation

BLEU Score

from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction

def calculate_bleu(reference, hypothesis):
    """Calculate BLEU score between reference and hypothesis."""
    smoothie = SmoothingFunction().method4

    return sentence_bleu(
        [reference.split()],
        hypothesis.split(),
        smoothing_function=smoothie
    )

# Usage
bleu = calculate_bleu(
    reference="The cat sat on the mat",
    hypothesis="A cat is sitting on the mat"
)

ROUGE Score

from rouge_score import rouge_scorer

def calculate_rouge(reference, hypothesis):
    """Calculate ROUGE scores."""
    scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
    scores = scorer.score(reference, hypothesis)

    return {
        'rouge1': scores['rouge1'].fmeasure,
        'rouge2': scores['rouge2'].fmeasure,
        'rougeL': scores['rougeL'].fmeasure
    }

BERTScore

from bert_score import score

def calculate_bertscore(references, hypotheses):
    """Calculate BERTScore using pre-trained BERT."""
    P, R, F1 = score(
        hypotheses,
        references,
        lang='en',
        model_type='microsoft/deberta-xlarge-mnli'
    )

    return {
        'precision': P.mean().item(),
        'recall': R.mean().item(),
        'f1': F1.mean().item()
    }

Custom Metrics

def calculate_groundedness(response, context):
    """Check if response is grounded in provided context."""
    # Use NLI model to check entailment
    from transformers import pipeline

    nli = pipeline("text-classification", model="microsoft/deberta-large-mnli")

    result = nli(f"{context} [SEP] {response}")[0]

    # Return confidence that response is entailed by context
    return result['score'] if result['label'] == 'ENTAILMENT' else 0.0

def calculate_toxicity(text):
    """Measure toxicity in generated text."""
    from detoxify import Detoxify

    results = Detoxify('original').predict(text)
    return max(results.values())  # Return highest toxicity score

def calculate_factuality(claim, knowledge_base):
    """Verify factual claims against knowledge base."""
    # Implementation depends on your knowledge base
    # Could use retrieval + NLI, or fact-checking API
    pass

LLM-as-Judge Patterns

Single Output Evaluation

def llm_judge_quality(response, question):
    """Use GPT-4 to judge response quality."""
    prompt = f"""Rate the following response on a scale of 1-10 for:
1. Accuracy (factually correct)
2. Helpfulness (answers the question)
3. Clarity (well-written and understandable)

Question: {question}
Response: {response}

Provide ratings in JSON format:
{{
  "accuracy": <1-10>,
  "helpfulness": <1-10>,
  "clarity": <1-10>,
  "reasoning": "<brief explanation>"
}}
"""

    result = openai.ChatCompletion.create(
        model="gpt-4",
        messages=[{"role": "user", "content": prompt}],
        temperature=0
    )

    return json.loads(result.choices[0].message.content)

Pairwise Comparison

def compare_responses(question, response_a, response_b):
    """Compare two responses using LLM judge."""
    prompt = f"""Compare these two responses to the question and determine which is better.

Question: {question}

Response A: {response_a}

Response B: {response_b}

Which response is better and why? Consider accuracy, helpfulness, and clarity.

Answer with JSON:
{{
  "winner": "A" or "B" or "tie",
  "reasoning": "<explanation>",
  "confidence": <1-10>
}}
"""

    result = openai.ChatCompletion.create(
        model="gpt-4",
        messages=[{"role": "user", "content": prompt}],
        temperature=0
    )

    return json.loads(result.choices[0].message.content)

Human Evaluation Frameworks

Annotation Guidelines

class AnnotationTask:
    """Structure for human annotation task."""

    def __init__(self, response, question, context=None):
        self.response = response
        self.question = question
        self.context = context

    def get_annotation_form(self):
        return {
            "question": self.question,
            "context": self.context,
            "response": self.response,
            "ratings": {
                "accuracy": {
                    "scale": "1-5",
                    "description": "Is the response factually correct?"
                },
                "relevance": {
                    "scale": "1-5",
                    "description": "Does it answer the question?"
                },
                "coherence": {
                    "scale": "1-5",
                    "description": "Is it logically consistent?"
                }
            },
            "issues": {
                "factual_error": False,
                "hallucination": False,
                "off_topic": False,
                "unsafe_content": False
            },
            "feedback": ""
        }

Inter-Rater Agreement

from sklearn.metrics import cohen_kappa_score

def calculate_agreement(rater1_scores, rater2_scores):
    """Calculate inter-rater agreement."""
    kappa = cohen_kappa_score(rater1_scores, rater2_scores)

    interpretation = {
        kappa < 0: "Poor",
        kappa < 0.2: "Slight",
        kappa < 0.4: "Fair",
        kappa < 0.6: "Moderate",
        kappa < 0.8: "Substantial",
        kappa <= 1.0: "Almost Perfect"
    }

    return {
        "kappa": kappa,
        "interpretation": interpretation[True]
    }

A/B Testing

Statistical Testing Framework

from scipy import stats
import numpy as np

class ABTest:
    def __init__(self, variant_a_name="A", variant_b_name="B"):
        self.variant_a = {"name": variant_a_name, "scores": []}
        self.variant_b = {"name": variant_b_name, "scores": []}

    def add_result(self, variant, score):
        """Add evaluation result for a variant."""
        if variant == "A":
            self.variant_a["scores"].append(score)
        else:
            self.variant_b["scores"].append(score)

    def analyze(self, alpha=0.05):
        """Perform statistical analysis."""
        a_scores = self.variant_a["scores"]
        b_scores = self.variant_b["scores"]

        # T-test
        t_stat, p_value = stats.ttest_ind(a_scores, b_scores)

        # Effect size (Cohen's d)
        pooled_std = np.sqrt((np.std(a_scores)**2 + np.std(b_scores)**2) / 2)
        cohens_d = (np.mean(b_scores) - np.mean(a_scores)) / pooled_std

        return {
            "variant_a_mean": np.mean(a_scores),
            "variant_b_mean": np.mean(b_scores),
            "difference": np.mean(b_scores) - np.mean(a_scores),
            "relative_improvement": (np.mean(b_scores) - np.mean(a_scores)) / np.mean(a_scores),
            "p_value": p_value,
            "statistically_significant": p_value < alpha,
            "cohens_d": cohens_d,
            "effect_size": self.interpret_cohens_d(cohens_d),
            "winner": "B" if np.mean(b_scores) > np.mean(a_scores) else "A"
        }

    @staticmethod
    def interpret_cohens_d(d):
        """Interpret Cohen's d effect size."""
        abs_d = abs(d)
        if abs_d < 0.2:
            return "negligible"
        elif abs_d < 0.5:
            return "small"
        elif abs_d < 0.8:
            return "medium"
        else:
            return "large"

Regression Testing

Regression Detection

class RegressionDetector:
    def __init__(self, baseline_results, threshold=0.05):
        self.baseline = baseline_results
        self.threshold = threshold

    def check_for_regression(self, new_results):
        """Detect if new results show regression."""
        regressions = []

        for metric in self.baseline.keys():
            baseline_score = self.baseline[metric]
            new_score = new_results.get(metric)

            if new_score is None:
                continue

            # Calculate relative change
            relative_change = (new_score - baseline_score) / baseline_score

            # Flag if significant decrease
            if relative_change < -self.threshold:
                regressions.append({
                    "metric": metric,
                    "baseline": baseline_score,
                    "current": new_score,
                    "change": relative_change
                })

        return {
            "has_regression": len(regressions) > 0,
            "regressions": regressions
        }

Benchmarking

Running Benchmarks

class BenchmarkRunner:
    def __init__(self, benchmark_dataset):
        self.dataset = benchmark_dataset

    def run_benchmark(self, model, metrics):
        """Run model on benchmark and calculate metrics."""
        results = {metric.name: [] for metric in metrics}

        for example in self.dataset:
            # Generate prediction
            prediction = model.predict(example["input"])

            # Calculate each metric
            for metric in metrics:
                score = metric.calculate(
                    prediction=prediction,
                    reference=example["reference"],
                    context=example.get("context")
                )
                results[metric.name].append(score)

        # Aggregate results
        return {
            metric: {
                "mean": np.mean(scores),
                "std": np.std(scores),
                "min": min(scores),
                "max": max(scores)
            }
            for metric, scores in results.items()
        }

Resources

  • references/metrics.md: Comprehensive metric guide
  • references/human-evaluation.md: Annotation best practices
  • references/benchmarking.md: Standard benchmarks
  • references/a-b-testing.md: Statistical testing guide
  • references/regression-testing.md: CI/CD integration
  • assets/evaluation-framework.py: Complete evaluation harness
  • assets/benchmark-dataset.jsonl: Example datasets
  • scripts/evaluate-model.py: Automated evaluation runner

Best Practices

  1. Multiple Metrics: Use diverse metrics for comprehensive view
  2. Representative Data: Test on real-world, diverse examples
  3. Baselines: Always compare against baseline performance
  4. Statistical Rigor: Use proper statistical tests for comparisons
  5. Continuous Evaluation: Integrate into CI/CD pipeline
  6. Human Validation: Combine automated metrics with human judgment
  7. Error Analysis: Investigate failures to understand weaknesses
  8. Version Control: Track evaluation results over time

Common Pitfalls

  • Single Metric Obsession: Optimizing for one metric at the expense of others
  • Small Sample Size: Drawing conclusions from too few examples
  • Data Contamination: Testing on training data
  • Ignoring Variance: Not accounting for statistical uncertainty
  • Metric Mismatch: Using metrics not aligned with business goals

Quick Install

/plugin add https://github.com/camoneart/claude-code/tree/main/llm-evaluation

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

camoneart/claude-code
Path: skills/llm-evaluation

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill