dapr-config-validator
About
This skill automatically validates DAPR configuration files (dapr.yaml and component YAMLs) for schema compliance, required fields, and common misconfigurations. It triggers when these files are created/modified or when users request validation, helping catch errors before deployment. Developers should use it during DAPR setup reviews and pre-deployment checks.
Quick Install
Claude Code
Recommended/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/dapr-config-validatorCopy and paste this command in Claude Code to install this skill
Documentation
DAPR Configuration Validator
This skill automatically validates DAPR configuration files to catch errors before runtime.
When to Use
Claude automatically uses this skill when:
- A YAML file in
components/directory is created or modified - A
dapr.yamlfile is created or modified - User asks to validate DAPR configuration
- Before deployment to catch issues early
Validation Rules
dapr.yaml Validation
# Required structure
version: 1
common:
resourcesPath: ./components
apps:
- appId: my-service # Required: unique identifier
appDirPath: ./src # Required: path to app
appPort: 8000 # Required: application port
command: ["python", "main.py"]
Checks performed:
-
versionfield present and valid -
appsarray is not empty - Each app has required fields:
appId,appDirPath,appPort -
appPortvalues don't conflict - Referenced paths exist
- Commands are valid
Component YAML Validation
# Required structure
apiVersion: dapr.io/v1alpha1 # Must be exact
kind: Component # Must be exact
metadata:
name: component-name # Required: valid name
spec:
type: state.redis # Required: valid type
version: v1 # Required: valid version
metadata: # Component-specific fields
- name: redisHost
value: localhost:6379
Checks performed:
-
apiVersionisdapr.io/v1alpha1 -
kindisComponent -
metadata.nameis valid (lowercase, alphanumeric, hyphens) -
spec.typeis a valid DAPR component type -
spec.versionis specified - Required metadata fields for component type are present
- No secrets in plain text (warn if found)
- Secret references are properly formatted
Valid Component Types
State Stores:
state.redisstate.azure.cosmosdbstate.postgresqlstate.mongodbstate.azure.tablestorage
Pub/Sub:
pubsub.redispubsub.azure.servicebus.topicspubsub.kafkapubsub.rabbitmq
Secret Stores:
secretstores.azure.keyvaultsecretstores.local.filesecretstores.kubernetes
Bindings:
bindings.azure.blobstoragebindings.azure.eventgridbindings.cronbindings.http
Validation Process
-
Find Configuration Files
Scan for: - dapr.yaml in project root - components/*.yaml - components/**/*.yaml -
Parse YAML
- Validate YAML syntax
- Check for duplicate keys
- Verify proper indentation
-
Schema Validation
- Check required fields
- Validate field types
- Verify enum values
-
Cross-Reference Checks
- Components referenced in dapr.yaml exist
- Secret stores exist if secrets are referenced
- No conflicting ports or app-ids
-
Security Checks
- No hardcoded secrets
- Secret references properly formatted
- Scopes defined for sensitive components
Output Format
DAPR Configuration Validation Report
=====================================
✓ dapr.yaml - Valid
- 2 applications defined
- Resources path: ./components
✓ components/statestore.yaml - Valid
- Type: state.redis
- Name: statestore
⚠ components/pubsub.yaml - Warnings
- Type: pubsub.azure.servicebus.topics
- Warning: connectionString appears to contain a secret value
- Recommendation: Use secretKeyRef instead
✗ components/secrets.yaml - Invalid
- Error: Missing required field 'spec.type'
- Error: 'metadata.name' contains invalid characters
Summary: 2 valid, 1 warning, 1 error
Common Issues and Fixes
Missing Required Field
# Bad
spec:
metadata:
- name: host
value: localhost
# Good
spec:
type: state.redis
version: v1
metadata:
- name: redisHost
value: localhost:6379
Secret in Plain Text
# Bad (security risk)
- name: password
value: mysecretpassword
# Good (use secret reference)
- name: password
secretKeyRef:
name: redis-secrets
key: password
Invalid Component Name
# Bad
metadata:
name: My State Store # No spaces, uppercase
# Good
metadata:
name: my-state-store # Lowercase, hyphens only
Wrong apiVersion
# Bad
apiVersion: v1
# Good
apiVersion: dapr.io/v1alpha1
Integration Points
This skill integrates with:
config-specialistagent for deeper configuration helpdapr-debuggeragent when validation errors cause runtime issues/dapr:componentcommand to generate valid configs
GitHub Repository
Related Skills
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
MetaThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
