Back to Skills

dapr-config-validator

majiayu000
Updated Today
2 views
58
9
58
View on GitHub
Metaautomationdesign

About

This skill automatically validates DAPR configuration files (dapr.yaml and component YAMLs) for schema compliance, required fields, and common misconfigurations. It triggers when these files are created/modified or when users request validation, helping catch errors before deployment. Developers should use it during DAPR setup reviews and pre-deployment checks.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/majiayu000/claude-skill-registry
Git CloneAlternative
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/dapr-config-validator

Copy and paste this command in Claude Code to install this skill

Documentation

DAPR Configuration Validator

This skill automatically validates DAPR configuration files to catch errors before runtime.

When to Use

Claude automatically uses this skill when:

  • A YAML file in components/ directory is created or modified
  • A dapr.yaml file is created or modified
  • User asks to validate DAPR configuration
  • Before deployment to catch issues early

Validation Rules

dapr.yaml Validation

# Required structure
version: 1
common:
  resourcesPath: ./components
apps:
  - appId: my-service      # Required: unique identifier
    appDirPath: ./src      # Required: path to app
    appPort: 8000          # Required: application port
    command: ["python", "main.py"]

Checks performed:

  • version field present and valid
  • apps array is not empty
  • Each app has required fields: appId, appDirPath, appPort
  • appPort values don't conflict
  • Referenced paths exist
  • Commands are valid

Component YAML Validation

# Required structure
apiVersion: dapr.io/v1alpha1   # Must be exact
kind: Component                 # Must be exact
metadata:
  name: component-name         # Required: valid name
spec:
  type: state.redis            # Required: valid type
  version: v1                  # Required: valid version
  metadata:                    # Component-specific fields
  - name: redisHost
    value: localhost:6379

Checks performed:

  • apiVersion is dapr.io/v1alpha1
  • kind is Component
  • metadata.name is valid (lowercase, alphanumeric, hyphens)
  • spec.type is a valid DAPR component type
  • spec.version is specified
  • Required metadata fields for component type are present
  • No secrets in plain text (warn if found)
  • Secret references are properly formatted

Valid Component Types

State Stores:

  • state.redis
  • state.azure.cosmosdb
  • state.postgresql
  • state.mongodb
  • state.azure.tablestorage

Pub/Sub:

  • pubsub.redis
  • pubsub.azure.servicebus.topics
  • pubsub.kafka
  • pubsub.rabbitmq

Secret Stores:

  • secretstores.azure.keyvault
  • secretstores.local.file
  • secretstores.kubernetes

Bindings:

  • bindings.azure.blobstorage
  • bindings.azure.eventgrid
  • bindings.cron
  • bindings.http

Validation Process

  1. Find Configuration Files

    Scan for:
    - dapr.yaml in project root
    - components/*.yaml
    - components/**/*.yaml
    
  2. Parse YAML

    • Validate YAML syntax
    • Check for duplicate keys
    • Verify proper indentation
  3. Schema Validation

    • Check required fields
    • Validate field types
    • Verify enum values
  4. Cross-Reference Checks

    • Components referenced in dapr.yaml exist
    • Secret stores exist if secrets are referenced
    • No conflicting ports or app-ids
  5. Security Checks

    • No hardcoded secrets
    • Secret references properly formatted
    • Scopes defined for sensitive components

Output Format

DAPR Configuration Validation Report
=====================================

✓ dapr.yaml - Valid
  - 2 applications defined
  - Resources path: ./components

✓ components/statestore.yaml - Valid
  - Type: state.redis
  - Name: statestore

⚠ components/pubsub.yaml - Warnings
  - Type: pubsub.azure.servicebus.topics
  - Warning: connectionString appears to contain a secret value
  - Recommendation: Use secretKeyRef instead

✗ components/secrets.yaml - Invalid
  - Error: Missing required field 'spec.type'
  - Error: 'metadata.name' contains invalid characters

Summary: 2 valid, 1 warning, 1 error

Common Issues and Fixes

Missing Required Field

# Bad
spec:
  metadata:
  - name: host
    value: localhost

# Good
spec:
  type: state.redis
  version: v1
  metadata:
  - name: redisHost
    value: localhost:6379

Secret in Plain Text

# Bad (security risk)
- name: password
  value: mysecretpassword

# Good (use secret reference)
- name: password
  secretKeyRef:
    name: redis-secrets
    key: password

Invalid Component Name

# Bad
metadata:
  name: My State Store   # No spaces, uppercase

# Good
metadata:
  name: my-state-store   # Lowercase, hyphens only

Wrong apiVersion

# Bad
apiVersion: v1

# Good
apiVersion: dapr.io/v1alpha1

Integration Points

This skill integrates with:

  • config-specialist agent for deeper configuration help
  • dapr-debugger agent when validation errors cause runtime issues
  • /dapr:component command to generate valid configs

GitHub Repository

majiayu000/claude-skill-registry
Path: skills/config-validator

Related Skills

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

creating-opencode-plugins

Meta

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

View skill

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill