visual-validation-skill
About
This Claude Skill performs automated visual UI validation using Playwright MCP to capture multi-viewport screenshots and run accessibility tests. It helps developers verify frontend changes by simulating user interactions and generating visual evidence reports. Use it when testing UI components, frontend updates, or conducting visual regression testing.
Quick Install
Claude Code
Recommended/plugin add https://github.com/Eibon7/roastr-aigit clone https://github.com/Eibon7/roastr-ai.git ~/.claude/skills/visual-validation-skillCopy and paste this command in Claude Code to install this skill
Documentation
name: visual-validation-skill description: Ejecuta validación visual de UI con Playwright MCP y genera evidencias. triggers:
- "UI change"
- "frontend"
- "visual"
- "component"
- "screenshot" used_by:
- ui-designer
- front-end-dev
- test-engineer
- whimsy-injector steps:
- paso1: "Conectar a Playwright MCP server (ya configurado en settings.local.json)"
- paso2: "Identificar componentes/rutas afectadas por cambios"
- paso3: "Lanzar navegación a páginas relevantes con mcp.playwright.browse"
- paso4: "Capturar screenshots en múltiples viewports (desktop, tablet, mobile)"
- paso5: "Ejecutar tests de accesibilidad automáticos (a11y)"
- paso6: "Simular interacciones de usuario (clicks, hovers, form submissions)"
- paso7: "Revisar consola del navegador y network logs"
- paso8: "Generar reporte visual con capturas y métricas" output: |
- Screenshots multi-viewport: docs/test-evidence/issue-{id}/screenshots/
- desktop-{page}.png
- tablet-{page}.png
- mobile-{page}.png
- Reporte visual: docs/test-evidence/issue-{id}/ui-report.md
- Logs de accesibilidad: docs/test-evidence/issue-{id}/a11y-logs.txt
- Network logs: docs/test-evidence/issue-{id}/network-log.json examples:
- contexto: "Se implementó nuevo componente UserProfile"
accion: |
- Navegar a /profile
- Capturar en 1920x1080 (desktop), 768x1024 (tablet), 375x667 (mobile)
- Probar interacción: click en "Edit" button
- Verificar que modal aparece correctamente
- Capturar estado hover de botones output: "6 screenshots + ui-report.md con métricas a11y"
- contexto: "Cambios en formulario de login"
accion: |
- Navegar a /login
- Capturar estado inicial
- Simular focus en input de email
- Capturar estado de error al submit incorrecto
- Validar que contraste cumple WCAG AA output: "Capturas de estados + reporte de contraste" viewports: desktop: "1920x1080" tablet: "768x1024" mobile: "375x667" checks:
- "Contraste de colores (WCAG AA mínimo)"
- "Focus visible en elementos interactivos"
- "Alt text en imágenes"
- "Labels en formularios"
- "Responsive sin roturas"
- "Loading states visibles"
- "Error states con mensajes claros" tools:
- mcp.playwright.browse: "Navegar páginas"
- mcp.playwright.screenshot: "Capturar estado visual"
- mcp.playwright.inspect: "Inspeccionar elementos" rules:
- SIEMPRE capturar en 3 viewports mínimo
- Incluir estados: loading, error, empty, success
- Verificar a11y en cada captura
- Documentar cualquier inconsistencia visual
- Comparar con specs en docs/ui.md si existen references:
- "docs/ui-review.md"
- "docs/test-evidence/ - Evidencias visuales"
- "CLAUDE.md - Visual validation"
GitHub Repository
Related Skills
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
Algorithmic Art Generation
MetaThis skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.
