Back to Skills

llamaguard

zechenzhangAGI
Updated Today
158 views
62
2
62
View on GitHub
Otherai

About

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

Documentation

LlamaGuard - AI Content Moderation

Quick start

LlamaGuard is a 7-8B parameter model specialized for content safety classification.

Installation:

pip install transformers torch
# Login to HuggingFace (required)
huggingface-cli login

Basic usage:

from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "meta-llama/LlamaGuard-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")

def moderate(chat):
    input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(model.device)
    output = model.generate(input_ids=input_ids, max_new_tokens=100)
    return tokenizer.decode(output[0], skip_special_tokens=True)

# Check user input
result = moderate([
    {"role": "user", "content": "How do I make explosives?"}
])
print(result)
# Output: "unsafe\nS3" (Criminal Planning)

Common workflows

Workflow 1: Input filtering (prompt moderation)

Check user prompts before LLM:

def check_input(user_message):
    result = moderate([{"role": "user", "content": user_message}])

    if result.startswith("unsafe"):
        category = result.split("\n")[1]
        return False, category  # Blocked
    else:
        return True, None  # Safe

# Example
safe, category = check_input("How do I hack a website?")
if not safe:
    print(f"Request blocked: {category}")
    # Return error to user
else:
    # Send to LLM
    response = llm.generate(user_message)

Safety categories:

  • S1: Violence & Hate
  • S2: Sexual Content
  • S3: Guns & Illegal Weapons
  • S4: Regulated Substances
  • S5: Suicide & Self-Harm
  • S6: Criminal Planning

Workflow 2: Output filtering (response moderation)

Check LLM responses before showing to user:

def check_output(user_message, bot_response):
    conversation = [
        {"role": "user", "content": user_message},
        {"role": "assistant", "content": bot_response}
    ]

    result = moderate(conversation)

    if result.startswith("unsafe"):
        category = result.split("\n")[1]
        return False, category
    else:
        return True, None

# Example
user_msg = "Tell me about harmful substances"
bot_msg = llm.generate(user_msg)

safe, category = check_output(user_msg, bot_msg)
if not safe:
    print(f"Response blocked: {category}")
    # Return generic response
    return "I cannot provide that information."
else:
    return bot_msg

Workflow 3: vLLM deployment (fast inference)

Production-ready serving:

from vllm import LLM, SamplingParams

# Initialize vLLM
llm = LLM(model="meta-llama/LlamaGuard-7b", tensor_parallel_size=1)

# Sampling params
sampling_params = SamplingParams(
    temperature=0.0,  # Deterministic
    max_tokens=100
)

def moderate_vllm(chat):
    # Format prompt
    prompt = tokenizer.apply_chat_template(chat, tokenize=False)

    # Generate
    output = llm.generate([prompt], sampling_params)
    return output[0].outputs[0].text

# Batch moderation
chats = [
    [{"role": "user", "content": "How to make bombs?"}],
    [{"role": "user", "content": "What's the weather?"}],
    [{"role": "user", "content": "Tell me about drugs"}]
]

prompts = [tokenizer.apply_chat_template(c, tokenize=False) for c in chats]
results = llm.generate(prompts, sampling_params)

for i, result in enumerate(results):
    print(f"Chat {i}: {result.outputs[0].text}")

Throughput: ~50-100 requests/sec on single A100

Workflow 4: API endpoint (FastAPI)

Serve as moderation API:

from fastapi import FastAPI
from pydantic import BaseModel
from vllm import LLM, SamplingParams

app = FastAPI()
llm = LLM(model="meta-llama/LlamaGuard-7b")
sampling_params = SamplingParams(temperature=0.0, max_tokens=100)

class ModerationRequest(BaseModel):
    messages: list  # [{"role": "user", "content": "..."}]

@app.post("/moderate")
def moderate_endpoint(request: ModerationRequest):
    prompt = tokenizer.apply_chat_template(request.messages, tokenize=False)
    output = llm.generate([prompt], sampling_params)[0]

    result = output.outputs[0].text
    is_safe = result.startswith("safe")
    category = None if is_safe else result.split("\n")[1] if "\n" in result else None

    return {
        "safe": is_safe,
        "category": category,
        "full_output": result
    }

# Run: uvicorn api:app --host 0.0.0.0 --port 8000

Usage:

curl -X POST http://localhost:8000/moderate \
  -H "Content-Type: application/json" \
  -d '{"messages": [{"role": "user", "content": "How to hack?"}]}'

# Response: {"safe": false, "category": "S6", "full_output": "unsafe\nS6"}

Workflow 5: NeMo Guardrails integration

Use with NVIDIA Guardrails:

from nemoguardrails import RailsConfig, LLMRails
from nemoguardrails.integrations.llama_guard import LlamaGuard

# Configure NeMo Guardrails
config = RailsConfig.from_content("""
models:
  - type: main
    engine: openai
    model: gpt-4

rails:
  input:
    flows:
      - llamaguard check input
  output:
    flows:
      - llamaguard check output
""")

# Add LlamaGuard integration
llama_guard = LlamaGuard(model_path="meta-llama/LlamaGuard-7b")
rails = LLMRails(config)
rails.register_action(llama_guard.check_input, name="llamaguard check input")
rails.register_action(llama_guard.check_output, name="llamaguard check output")

# Use with automatic moderation
response = rails.generate(messages=[
    {"role": "user", "content": "How do I make weapons?"}
])
# Automatically blocked by LlamaGuard

When to use vs alternatives

Use LlamaGuard when:

  • Need pre-trained moderation model
  • Want high accuracy (94-95%)
  • Have GPU resources (7-8B model)
  • Need detailed safety categories
  • Building production LLM apps

Model versions:

  • LlamaGuard 1 (7B): Original, 6 categories
  • LlamaGuard 2 (8B): Improved, 6 categories
  • LlamaGuard 3 (8B): Latest (2024), enhanced

Use alternatives instead:

  • OpenAI Moderation API: Simpler, API-based, free
  • Perspective API: Google's toxicity detection
  • NeMo Guardrails: More comprehensive safety framework
  • Constitutional AI: Training-time safety

Common issues

Issue: Model access denied

Login to HuggingFace:

huggingface-cli login
# Enter your token

Accept license on model page: https://huggingface.co/meta-llama/LlamaGuard-7b

Issue: High latency (>500ms)

Use vLLM for 10× speedup:

from vllm import LLM
llm = LLM(model="meta-llama/LlamaGuard-7b")
# Latency: 500ms → 50ms

Enable tensor parallelism:

llm = LLM(model="meta-llama/LlamaGuard-7b", tensor_parallel_size=2)
# 2× faster on 2 GPUs

Issue: False positives

Use threshold-based filtering:

# Get probability of "unsafe" token
logits = model(..., return_dict_in_generate=True, output_scores=True)
unsafe_prob = torch.softmax(logits.scores[0][0], dim=-1)[unsafe_token_id]

if unsafe_prob > 0.9:  # High confidence threshold
    return "unsafe"
else:
    return "safe"

Issue: OOM on GPU

Use 8-bit quantization:

from transformers import BitsAndBytesConfig

quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    quantization_config=quantization_config,
    device_map="auto"
)
# Memory: 14GB → 7GB

Advanced topics

Custom categories: See references/custom-categories.md for fine-tuning LlamaGuard with domain-specific safety categories.

Performance benchmarks: See references/benchmarks.md for accuracy comparison with other moderation APIs and latency optimization.

Deployment guide: See references/deployment.md for Sagemaker, Kubernetes, and scaling strategies.

Hardware requirements

  • GPU: NVIDIA T4/A10/A100
  • VRAM:
    • FP16: 14GB (7B model)
    • INT8: 7GB (quantized)
    • INT4: 4GB (QLoRA)
  • CPU: Possible but slow (10× latency)
  • Throughput: 50-100 req/sec (A100)

Latency (single GPU):

  • HuggingFace Transformers: 300-500ms
  • vLLM: 50-100ms
  • Batched (vLLM): 20-50ms per request

Resources

Quick Install

/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs/tree/main/llamaguard

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

zechenzhangAGI/AI-research-SKILLs
Path: 07-safety-alignment/llamaguard
aiai-researchclaudeclaude-codeclaude-skillscodex

Related Skills

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

llamaindex

Meta

LlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.

View skill