Back to Skills

pdf

Elios-FPT
Updated Today
3 views
1
View on GitHub
Metapdfwordai

About

This PDF manipulation toolkit enables developers to programmatically process, generate, and analyze PDF documents at scale. It provides capabilities for extracting text and tables, creating new PDFs, and merging or splitting documents. Use this skill when Claude needs to handle PDF forms or perform batch operations on PDF files.

Documentation

PDF Processing Guide

Overview

This guide covers essential PDF processing operations using Python libraries and command-line tools. For advanced features, JavaScript libraries, and detailed examples, see reference.md. If you need to fill out a PDF form, read forms.md and follow its instructions.

Quick Start

from pypdf import PdfReader, PdfWriter

# Read a PDF
reader = PdfReader("document.pdf")
print(f"Pages: {len(reader.pages)}")

# Extract text
text = ""
for page in reader.pages:
    text += page.extract_text()

Python Libraries

pypdf - Basic Operations

Merge PDFs

from pypdf import PdfWriter, PdfReader

writer = PdfWriter()
for pdf_file in ["doc1.pdf", "doc2.pdf", "doc3.pdf"]:
    reader = PdfReader(pdf_file)
    for page in reader.pages:
        writer.add_page(page)

with open("merged.pdf", "wb") as output:
    writer.write(output)

Split PDF

reader = PdfReader("input.pdf")
for i, page in enumerate(reader.pages):
    writer = PdfWriter()
    writer.add_page(page)
    with open(f"page_{i+1}.pdf", "wb") as output:
        writer.write(output)

Extract Metadata

reader = PdfReader("document.pdf")
meta = reader.metadata
print(f"Title: {meta.title}")
print(f"Author: {meta.author}")
print(f"Subject: {meta.subject}")
print(f"Creator: {meta.creator}")

Rotate Pages

reader = PdfReader("input.pdf")
writer = PdfWriter()

page = reader.pages[0]
page.rotate(90)  # Rotate 90 degrees clockwise
writer.add_page(page)

with open("rotated.pdf", "wb") as output:
    writer.write(output)

pdfplumber - Text and Table Extraction

Extract Text with Layout

import pdfplumber

with pdfplumber.open("document.pdf") as pdf:
    for page in pdf.pages:
        text = page.extract_text()
        print(text)

Extract Tables

with pdfplumber.open("document.pdf") as pdf:
    for i, page in enumerate(pdf.pages):
        tables = page.extract_tables()
        for j, table in enumerate(tables):
            print(f"Table {j+1} on page {i+1}:")
            for row in table:
                print(row)

Advanced Table Extraction

import pandas as pd

with pdfplumber.open("document.pdf") as pdf:
    all_tables = []
    for page in pdf.pages:
        tables = page.extract_tables()
        for table in tables:
            if table:  # Check if table is not empty
                df = pd.DataFrame(table[1:], columns=table[0])
                all_tables.append(df)

# Combine all tables
if all_tables:
    combined_df = pd.concat(all_tables, ignore_index=True)
    combined_df.to_excel("extracted_tables.xlsx", index=False)

reportlab - Create PDFs

Basic PDF Creation

from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas

c = canvas.Canvas("hello.pdf", pagesize=letter)
width, height = letter

# Add text
c.drawString(100, height - 100, "Hello World!")
c.drawString(100, height - 120, "This is a PDF created with reportlab")

# Add a line
c.line(100, height - 140, 400, height - 140)

# Save
c.save()

Create PDF with Multiple Pages

from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, PageBreak
from reportlab.lib.styles import getSampleStyleSheet

doc = SimpleDocTemplate("report.pdf", pagesize=letter)
styles = getSampleStyleSheet()
story = []

# Add content
title = Paragraph("Report Title", styles['Title'])
story.append(title)
story.append(Spacer(1, 12))

body = Paragraph("This is the body of the report. " * 20, styles['Normal'])
story.append(body)
story.append(PageBreak())

# Page 2
story.append(Paragraph("Page 2", styles['Heading1']))
story.append(Paragraph("Content for page 2", styles['Normal']))

# Build PDF
doc.build(story)

Command-Line Tools

pdftotext (poppler-utils)

# Extract text
pdftotext input.pdf output.txt

# Extract text preserving layout
pdftotext -layout input.pdf output.txt

# Extract specific pages
pdftotext -f 1 -l 5 input.pdf output.txt  # Pages 1-5

qpdf

# Merge PDFs
qpdf --empty --pages file1.pdf file2.pdf -- merged.pdf

# Split pages
qpdf input.pdf --pages . 1-5 -- pages1-5.pdf
qpdf input.pdf --pages . 6-10 -- pages6-10.pdf

# Rotate pages
qpdf input.pdf output.pdf --rotate=+90:1  # Rotate page 1 by 90 degrees

# Remove password
qpdf --password=mypassword --decrypt encrypted.pdf decrypted.pdf

pdftk (if available)

# Merge
pdftk file1.pdf file2.pdf cat output merged.pdf

# Split
pdftk input.pdf burst

# Rotate
pdftk input.pdf rotate 1east output rotated.pdf

Common Tasks

Extract Text from Scanned PDFs

# Requires: pip install pytesseract pdf2image
import pytesseract
from pdf2image import convert_from_path

# Convert PDF to images
images = convert_from_path('scanned.pdf')

# OCR each page
text = ""
for i, image in enumerate(images):
    text += f"Page {i+1}:\n"
    text += pytesseract.image_to_string(image)
    text += "\n\n"

print(text)

Add Watermark

from pypdf import PdfReader, PdfWriter

# Create watermark (or load existing)
watermark = PdfReader("watermark.pdf").pages[0]

# Apply to all pages
reader = PdfReader("document.pdf")
writer = PdfWriter()

for page in reader.pages:
    page.merge_page(watermark)
    writer.add_page(page)

with open("watermarked.pdf", "wb") as output:
    writer.write(output)

Extract Images

# Using pdfimages (poppler-utils)
pdfimages -j input.pdf output_prefix

# This extracts all images as output_prefix-000.jpg, output_prefix-001.jpg, etc.

Password Protection

from pypdf import PdfReader, PdfWriter

reader = PdfReader("input.pdf")
writer = PdfWriter()

for page in reader.pages:
    writer.add_page(page)

# Add password
writer.encrypt("userpassword", "ownerpassword")

with open("encrypted.pdf", "wb") as output:
    writer.write(output)

Quick Reference

TaskBest ToolCommand/Code
Merge PDFspypdfwriter.add_page(page)
Split PDFspypdfOne page per file
Extract textpdfplumberpage.extract_text()
Extract tablespdfplumberpage.extract_tables()
Create PDFsreportlabCanvas or Platypus
Command line mergeqpdfqpdf --empty --pages ...
OCR scanned PDFspytesseractConvert to image first
Fill PDF formspdf-lib or pypdf (see forms.md)See forms.md

Next Steps

  • For advanced pypdfium2 usage, see reference.md
  • For JavaScript libraries (pdf-lib), see reference.md
  • If you need to fill out a PDF form, follow the instructions in forms.md
  • For troubleshooting guides, see reference.md

Quick Install

/plugin add https://github.com/Elios-FPT/EliosCodePracticeService/tree/main/pdf

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

Elios-FPT/EliosCodePracticeService
Path: .claude/skills/document-skills/pdf

Related Skills

llamaguard

Other

LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.

View skill

sglang

Meta

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

View skill

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill