Back to Skills

schema-visualizer

CuriousLearner
Updated Today
16 views
16
3
16
View on GitHub
Metaworddesigndata

About

The schema-visualizer skill automatically generates database schema diagrams, ERDs, and documentation by analyzing your database structure. It can parse ORM models, migration files, and SQL statements to create visualizations and detect relationships. Use this skill to quickly document your data model and understand table relationships for development or documentation purposes.

Documentation

Schema Visualizer Skill

Generate database schema diagrams, ERDs, and documentation from database schemas.

Instructions

You are a database schema visualization expert. When invoked:

  1. Analyze Database Schema:

    • Inspect database structure (tables, columns, types)
    • Identify relationships (foreign keys, references)
    • Detect indexes and constraints
    • Understand data model patterns
  2. Generate Visualizations:

    • Create Entity Relationship Diagrams (ERD)
    • Generate Mermaid diagrams for documentation
    • Produce schema documentation in various formats
    • Show table relationships and cardinality
  3. Detect Schema from Code:

    • Parse ORM models (Prisma, TypeORM, SQLAlchemy)
    • Extract schema from migration files
    • Analyze database dump files
    • Read CREATE TABLE statements
  4. Provide Insights:

    • Identify missing indexes
    • Suggest normalization improvements
    • Highlight potential performance issues
    • Recommend relationship optimizations

Supported Formats

  • Diagrams: Mermaid ERD, PlantUML, dbdiagram.io
  • Documentation: Markdown tables, JSON schema, YAML
  • Schema Sources: SQL dumps, ORM models, migration files, live database connection

Usage Examples

@schema-visualizer
@schema-visualizer --from-prisma schema.prisma
@schema-visualizer --from-migrations
@schema-visualizer --format mermaid
@schema-visualizer --analyze-relationships

Mermaid ERD Examples

Basic E-Commerce Schema

erDiagram
    USERS ||--o{ ORDERS : places
    USERS {
        int id PK
        string username
        string email UK
        string password_hash
        boolean active
        timestamp created_at
        timestamp updated_at
    }

    ORDERS ||--|{ ORDER_ITEMS : contains
    ORDERS {
        int id PK
        int user_id FK
        decimal total_amount
        string status
        timestamp created_at
        timestamp updated_at
    }

    PRODUCTS ||--o{ ORDER_ITEMS : "ordered in"
    PRODUCTS {
        int id PK
        string name
        text description
        decimal price
        int stock_quantity
        int category_id FK
        timestamp created_at
        timestamp updated_at
    }

    ORDER_ITEMS {
        int id PK
        int order_id FK
        int product_id FK
        int quantity
        decimal price
    }

    CATEGORIES ||--o{ PRODUCTS : contains
    CATEGORIES {
        int id PK
        string name
        int parent_id FK "NULL allowed"
        timestamp created_at
    }

    USERS ||--o{ REVIEWS : writes
    PRODUCTS ||--o{ REVIEWS : receives
    REVIEWS {
        int id PK
        int user_id FK
        int product_id FK
        int rating
        text comment
        timestamp created_at
    }

Multi-Tenant SaaS Application

erDiagram
    ORGANIZATIONS ||--o{ USERS : employs
    ORGANIZATIONS {
        int id PK
        string name
        string slug UK
        string plan
        timestamp created_at
    }

    USERS ||--o{ PROJECTS : creates
    USERS {
        int id PK
        int organization_id FK
        string email UK
        string name
        string role
        timestamp created_at
    }

    PROJECTS ||--o{ TASKS : contains
    PROJECTS {
        int id PK
        int organization_id FK
        int owner_id FK
        string name
        text description
        string status
        timestamp created_at
    }

    TASKS ||--o{ COMMENTS : has
    TASKS {
        int id PK
        int project_id FK
        int assignee_id FK
        string title
        text description
        string priority
        string status
        timestamp due_date
        timestamp created_at
    }

    USERS ||--o{ COMMENTS : writes
    COMMENTS {
        int id PK
        int task_id FK
        int user_id FK
        text content
        timestamp created_at
    }

    USERS ||--o{ TASKS : "assigned to"

Blog Platform Schema

erDiagram
    USERS ||--o{ POSTS : authors
    USERS ||--o{ COMMENTS : writes
    USERS {
        int id PK
        string username UK
        string email UK
        string bio
        string avatar_url
        timestamp created_at
    }

    POSTS ||--o{ COMMENTS : receives
    POSTS ||--o{ POST_TAGS : has
    POSTS {
        int id PK
        int author_id FK
        string title
        string slug UK
        text content
        string status
        timestamp published_at
        timestamp created_at
        timestamp updated_at
    }

    COMMENTS ||--o{ COMMENTS : replies
    COMMENTS {
        int id PK
        int post_id FK
        int user_id FK
        int parent_id FK "NULL allowed"
        text content
        timestamp created_at
    }

    TAGS ||--o{ POST_TAGS : tagged
    TAGS {
        int id PK
        string name UK
        string slug UK
    }

    POST_TAGS {
        int post_id FK
        int tag_id FK
    }

Schema Documentation Formats

Markdown Table Format

# Database Schema Documentation

## Users Table

| Column | Type | Constraints | Description |
|--------|------|-------------|-------------|
| id | INTEGER | PRIMARY KEY, AUTO_INCREMENT | Unique user identifier |
| username | VARCHAR(50) | UNIQUE, NOT NULL | User's login name |
| email | VARCHAR(255) | UNIQUE, NOT NULL | User's email address |
| password_hash | VARCHAR(255) | NOT NULL | Bcrypt hashed password |
| active | BOOLEAN | DEFAULT true | Account active status |
| created_at | TIMESTAMP | DEFAULT NOW() | Account creation time |
| updated_at | TIMESTAMP | DEFAULT NOW() | Last update time |

**Indexes:**
- `idx_users_email` on (email)
- `idx_users_username` on (username)

**Foreign Keys:**
- None

---

## Orders Table

| Column | Type | Constraints | Description |
|--------|------|-------------|-------------|
| id | INTEGER | PRIMARY KEY, AUTO_INCREMENT | Unique order identifier |
| user_id | INTEGER | FOREIGN KEY (users.id), NOT NULL | Reference to user |
| total_amount | DECIMAL(10,2) | NOT NULL | Order total amount |
| status | VARCHAR(20) | NOT NULL, DEFAULT 'pending' | Order status |
| created_at | TIMESTAMP | DEFAULT NOW() | Order creation time |
| updated_at | TIMESTAMP | DEFAULT NOW() | Last update time |

**Indexes:**
- `idx_orders_user_id` on (user_id)
- `idx_orders_status` on (status)
- `idx_orders_created_at` on (created_at)

**Foreign Keys:**
- `fk_orders_user_id` FOREIGN KEY (user_id) REFERENCES users(id) ON DELETE CASCADE

**Check Constraints:**
- `chk_orders_total_amount` CHECK (total_amount >= 0)
- `chk_orders_status` CHECK (status IN ('pending', 'processing', 'completed', 'cancelled'))

JSON Schema Format

{
  "database": "ecommerce",
  "tables": {
    "users": {
      "columns": {
        "id": {
          "type": "INTEGER",
          "primaryKey": true,
          "autoIncrement": true,
          "nullable": false
        },
        "username": {
          "type": "VARCHAR(50)",
          "unique": true,
          "nullable": false
        },
        "email": {
          "type": "VARCHAR(255)",
          "unique": true,
          "nullable": false
        },
        "active": {
          "type": "BOOLEAN",
          "default": true,
          "nullable": false
        },
        "created_at": {
          "type": "TIMESTAMP",
          "default": "NOW()",
          "nullable": false
        }
      },
      "indexes": [
        {
          "name": "idx_users_email",
          "columns": ["email"],
          "unique": true
        }
      ],
      "foreignKeys": []
    },
    "orders": {
      "columns": {
        "id": {
          "type": "INTEGER",
          "primaryKey": true,
          "autoIncrement": true
        },
        "user_id": {
          "type": "INTEGER",
          "nullable": false
        },
        "total_amount": {
          "type": "DECIMAL(10,2)",
          "nullable": false
        },
        "status": {
          "type": "VARCHAR(20)",
          "default": "pending"
        }
      },
      "indexes": [
        {
          "name": "idx_orders_user_id",
          "columns": ["user_id"]
        }
      ],
      "foreignKeys": [
        {
          "name": "fk_orders_user_id",
          "column": "user_id",
          "references": {
            "table": "users",
            "column": "id"
          },
          "onDelete": "CASCADE",
          "onUpdate": "CASCADE"
        }
      ]
    }
  }
}

Extracting Schema from ORM Models

From Prisma Schema

// schema.prisma
model User {
  id        Int      @id @default(autoincrement())
  email     String   @unique
  username  String   @unique
  active    Boolean  @default(true)
  createdAt DateTime @default(now())
  updatedAt DateTime @updatedAt

  orders    Order[]
  reviews   Review[]

  @@index([email])
  @@map("users")
}

model Order {
  id          Int      @id @default(autoincrement())
  userId      Int
  totalAmount Decimal  @db.Decimal(10, 2)
  status      String   @default("pending")
  createdAt   DateTime @default(now())

  user  User         @relation(fields: [userId], references: [id], onDelete: Cascade)
  items OrderItem[]

  @@index([userId])
  @@index([status])
  @@map("orders")
}

Generated Visualization:

erDiagram
    USERS ||--o{ ORDERS : "has many"
    USERS ||--o{ REVIEWS : "has many"

    USERS {
        int id PK
        string email UK
        string username UK
        boolean active
        datetime created_at
        datetime updated_at
    }

    ORDERS {
        int id PK
        int user_id FK
        decimal total_amount
        string status
        datetime created_at
    }

From TypeORM Entities

// user.entity.ts
@Entity('users')
export class User {
  @PrimaryGeneratedColumn()
  id: number;

  @Column({ unique: true })
  email: string;

  @Column({ unique: true })
  username: string;

  @Column({ default: true })
  active: boolean;

  @CreateDateColumn()
  createdAt: Date;

  @UpdateDateColumn()
  updatedAt: Date;

  @OneToMany(() => Order, order => order.user)
  orders: Order[];

  @Index()
  @Column()
  organizationId: number;
}

// order.entity.ts
@Entity('orders')
export class Order {
  @PrimaryGeneratedColumn()
  id: number;

  @Column()
  userId: number;

  @Column('decimal', { precision: 10, scale: 2 })
  totalAmount: number;

  @Column({ default: 'pending' })
  status: string;

  @ManyToOne(() => User, user => user.orders, { onDelete: 'CASCADE' })
  @JoinColumn({ name: 'userId' })
  user: User;

  @OneToMany(() => OrderItem, item => item.order)
  items: OrderItem[];
}

From SQLAlchemy Models

# models.py
from sqlalchemy import Column, Integer, String, Boolean, DECIMAL, DateTime, ForeignKey
from sqlalchemy.orm import relationship
from datetime import datetime

class User(Base):
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True, autoincrement=True)
    email = Column(String(255), unique=True, nullable=False, index=True)
    username = Column(String(50), unique=True, nullable=False)
    active = Column(Boolean, default=True)
    created_at = Column(DateTime, default=datetime.utcnow)
    updated_at = Column(DateTime, default=datetime.utcnow, onupdate=datetime.utcnow)

    # Relationships
    orders = relationship('Order', back_populates='user', cascade='all, delete-orphan')
    reviews = relationship('Review', back_populates='user')

class Order(Base):
    __tablename__ = 'orders'

    id = Column(Integer, primary_key=True, autoincrement=True)
    user_id = Column(Integer, ForeignKey('users.id', ondelete='CASCADE'), nullable=False, index=True)
    total_amount = Column(DECIMAL(10, 2), nullable=False)
    status = Column(String(20), default='pending', index=True)
    created_at = Column(DateTime, default=datetime.utcnow)

    # Relationships
    user = relationship('User', back_populates='orders')
    items = relationship('OrderItem', back_populates='order')

Schema Analysis Features

Relationship Cardinality Detection

# Relationship Analysis

## One-to-Many Relationships
- Users → Orders (One user can have many orders)
- Products → OrderItems (One product can be in many orders)
- Categories → Products (One category can have many products)

## Many-to-Many Relationships
- Posts ↔ Tags (Through post_tags junction table)
- Users ↔ Roles (Through user_roles junction table)

## One-to-One Relationships
- Users → UserProfiles (One user has one profile)

Missing Indexes Detection

# Schema Health Report

## Missing Indexes

⚠️ **High Priority:**
- `orders.user_id` - Foreign key without index (impacts JOIN performance)
- `order_items.product_id` - Foreign key without index

⚠️ **Medium Priority:**
- `users.email` - Frequently used in WHERE clauses
- `products.category_id` - Used in JOIN operations

## Suggested Index Additions:

```sql
CREATE INDEX idx_orders_user_id ON orders(user_id);
CREATE INDEX idx_order_items_product_id ON order_items(product_id);
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_products_category_id ON products(category_id);

-- Composite index for common query pattern
CREATE INDEX idx_orders_user_status ON orders(user_id, status);

Normalization Analysis

# Database Normalization Report

## Current Normalization Level: 3NF

### First Normal Form (1NF) ✓
- All tables have primary keys
- No repeating groups
- Atomic values in all columns

### Second Normal Form (2NF) ✓
- All tables in 1NF
- No partial dependencies on composite keys

### Third Normal Form (3NF) ✓
- All tables in 2NF
- No transitive dependencies

### Potential Improvements:

**Denormalization Opportunities (for performance):**
- Add `user_name` to `orders` table to avoid JOIN for display
- Cache `order_count` in `users` table
- Store `product_name` in `order_items` for historical accuracy

**Further Normalization Suggestions:**
- Extract address fields from `users` to separate `addresses` table
- Split `products.description` to separate `product_details` table if frequently unused

dbdiagram.io Format

// Use dbdiagram.io to visualize this schema

Table users {
  id int [pk, increment]
  username varchar(50) [unique, not null]
  email varchar(255) [unique, not null]
  password_hash varchar(255) [not null]
  active boolean [default: true]
  created_at timestamp [default: `now()`]
  updated_at timestamp [default: `now()`]

  Indexes {
    email [unique]
    username [unique]
  }
}

Table orders {
  id int [pk, increment]
  user_id int [not null, ref: > users.id]
  total_amount decimal(10,2) [not null]
  status varchar(20) [default: 'pending']
  created_at timestamp [default: `now()`]
  updated_at timestamp [default: `now()`]

  Indexes {
    user_id
    status
    created_at
  }
}

Table products {
  id int [pk, increment]
  name varchar(255) [not null]
  description text
  price decimal(10,2) [not null]
  stock_quantity int [default: 0]
  category_id int [ref: > categories.id]
  created_at timestamp [default: `now()`]

  Indexes {
    category_id
    (name, category_id) [name: 'idx_product_category']
  }
}

Table order_items {
  id int [pk, increment]
  order_id int [not null, ref: > orders.id]
  product_id int [not null, ref: > products.id]
  quantity int [not null]
  price decimal(10,2) [not null]

  Indexes {
    order_id
    product_id
  }
}

Table categories {
  id int [pk, increment]
  name varchar(100) [unique, not null]
  parent_id int [ref: > categories.id]
  created_at timestamp [default: `now()`]
}

Table reviews {
  id int [pk, increment]
  user_id int [not null, ref: > users.id]
  product_id int [not null, ref: > products.id]
  rating int [not null, note: '1-5']
  comment text
  created_at timestamp [default: `now()`]

  Indexes {
    (user_id, product_id) [unique]
    product_id
  }
}

PlantUML Format

@startuml

entity "users" as users {
  *id : int <<PK>>
  --
  *username : varchar(50) <<UK>>
  *email : varchar(255) <<UK>>
  *password_hash : varchar(255)
  active : boolean
  created_at : timestamp
  updated_at : timestamp
}

entity "orders" as orders {
  *id : int <<PK>>
  --
  *user_id : int <<FK>>
  *total_amount : decimal(10,2)
  status : varchar(20)
  created_at : timestamp
  updated_at : timestamp
}

entity "products" as products {
  *id : int <<PK>>
  --
  *name : varchar(255)
  description : text
  *price : decimal(10,2)
  stock_quantity : int
  category_id : int <<FK>>
  created_at : timestamp
}

entity "order_items" as order_items {
  *id : int <<PK>>
  --
  *order_id : int <<FK>>
  *product_id : int <<FK>>
  *quantity : int
  *price : decimal(10,2)
}

entity "categories" as categories {
  *id : int <<PK>>
  --
  *name : varchar(100)
  parent_id : int <<FK>>
  created_at : timestamp
}

users ||--o{ orders
orders ||--|{ order_items
products ||--o{ order_items
categories ||--o{ products
categories ||--o{ categories : "parent/child"

@enduml

Schema Comparison

# Schema Comparison: Production vs Staging

## New Tables in Staging:
- `notifications` - User notification system
- `audit_logs` - Activity tracking

## Modified Tables:

### users
**Added columns:**
- `last_login_at` (timestamp)
- `email_verified` (boolean)

**Removed columns:**
- `legacy_id` (deprecated)

### orders
**Modified columns:**
- `total_amount`: DECIMAL(8,2) → DECIMAL(10,2) (increased precision)

**Added indexes:**
- `idx_orders_created_at` on (created_at)

## Migration Script:

```sql
-- Add new columns
ALTER TABLE users ADD COLUMN last_login_at TIMESTAMP;
ALTER TABLE users ADD COLUMN email_verified BOOLEAN DEFAULT false;
ALTER TABLE users DROP COLUMN legacy_id;

-- Modify column type
ALTER TABLE orders ALTER COLUMN total_amount TYPE DECIMAL(10,2);

-- Add new index
CREATE INDEX idx_orders_created_at ON orders(created_at);

-- Create new tables
CREATE TABLE notifications (
  id SERIAL PRIMARY KEY,
  user_id INTEGER NOT NULL REFERENCES users(id),
  type VARCHAR(50) NOT NULL,
  message TEXT NOT NULL,
  read BOOLEAN DEFAULT false,
  created_at TIMESTAMP DEFAULT NOW()
);

Best Practices

  1. Always visualize before making changes - Understand impact
  2. Document relationship cardinality - One-to-many, many-to-many
  3. Include indexes in diagrams - Performance consideration
  4. Show foreign key constraints - Data integrity
  5. Use consistent naming conventions - Improve readability
  6. Version control schema changes - Track evolution
  7. Generate diagrams from code - Keep in sync
  8. Include constraints and checks - Business rules
  9. Document enum values - Valid states
  10. Keep diagrams up to date - Living documentation

Tools Integration

Generate from Database

# PostgreSQL - using pg_dump
pg_dump -s -d mydb > schema.sql

# MySQL - schema only
mysqldump --no-data mydb > schema.sql

# Using SchemaSpy (generates HTML visualization)
java -jar schemaspy.jar -t pgsql -db mydb -u user -p password -o output

# Using DBeaver (export ERD)
# File → Export → Database Structure → ERD

Generate from ORM

# Prisma - generate ERD
npx prisma generate
npx prisma studio

# TypeORM - generate migration
npx typeorm migration:generate -n InitialSchema

# Django - generate ERD
python manage.py graph_models -a -o erd.png

# Rails - generate ERD
bundle exec rails erd

Notes

  • Update diagrams when schema changes
  • Include constraints and indexes in visualization
  • Use consistent colors for entity types
  • Generate documentation automatically from schema
  • Version control schema visualization files
  • Consider using database documentation tools (SchemaSpy, dbdocs)
  • Keep ERDs readable - split large schemas into logical domains

Quick Install

/plugin add https://github.com/CuriousLearner/devkit/tree/main/schema-visualizer

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

CuriousLearner/devkit
Path: skills/schema-visualizer

Related Skills

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

Algorithmic Art Generation

Meta

This skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.

View skill

webapp-testing

Testing

This Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.

View skill

requesting-code-review

Design

This skill dispatches a code-reviewer subagent to analyze code changes against requirements before proceeding. It should be used after completing tasks, implementing major features, or before merging to main. The review helps catch issues early by comparing the current implementation with the original plan.

View skill