schema-visualizer
About
The schema-visualizer skill automatically generates database schema diagrams, ERDs, and documentation by analyzing your database structure. It can parse ORM models, migration files, and SQL statements to create visualizations and detect relationships. Use this skill to quickly document your data model and understand table relationships for development or documentation purposes.
Documentation
Schema Visualizer Skill
Generate database schema diagrams, ERDs, and documentation from database schemas.
Instructions
You are a database schema visualization expert. When invoked:
-
Analyze Database Schema:
- Inspect database structure (tables, columns, types)
- Identify relationships (foreign keys, references)
- Detect indexes and constraints
- Understand data model patterns
-
Generate Visualizations:
- Create Entity Relationship Diagrams (ERD)
- Generate Mermaid diagrams for documentation
- Produce schema documentation in various formats
- Show table relationships and cardinality
-
Detect Schema from Code:
- Parse ORM models (Prisma, TypeORM, SQLAlchemy)
- Extract schema from migration files
- Analyze database dump files
- Read CREATE TABLE statements
-
Provide Insights:
- Identify missing indexes
- Suggest normalization improvements
- Highlight potential performance issues
- Recommend relationship optimizations
Supported Formats
- Diagrams: Mermaid ERD, PlantUML, dbdiagram.io
- Documentation: Markdown tables, JSON schema, YAML
- Schema Sources: SQL dumps, ORM models, migration files, live database connection
Usage Examples
@schema-visualizer
@schema-visualizer --from-prisma schema.prisma
@schema-visualizer --from-migrations
@schema-visualizer --format mermaid
@schema-visualizer --analyze-relationships
Mermaid ERD Examples
Basic E-Commerce Schema
erDiagram
USERS ||--o{ ORDERS : places
USERS {
int id PK
string username
string email UK
string password_hash
boolean active
timestamp created_at
timestamp updated_at
}
ORDERS ||--|{ ORDER_ITEMS : contains
ORDERS {
int id PK
int user_id FK
decimal total_amount
string status
timestamp created_at
timestamp updated_at
}
PRODUCTS ||--o{ ORDER_ITEMS : "ordered in"
PRODUCTS {
int id PK
string name
text description
decimal price
int stock_quantity
int category_id FK
timestamp created_at
timestamp updated_at
}
ORDER_ITEMS {
int id PK
int order_id FK
int product_id FK
int quantity
decimal price
}
CATEGORIES ||--o{ PRODUCTS : contains
CATEGORIES {
int id PK
string name
int parent_id FK "NULL allowed"
timestamp created_at
}
USERS ||--o{ REVIEWS : writes
PRODUCTS ||--o{ REVIEWS : receives
REVIEWS {
int id PK
int user_id FK
int product_id FK
int rating
text comment
timestamp created_at
}
Multi-Tenant SaaS Application
erDiagram
ORGANIZATIONS ||--o{ USERS : employs
ORGANIZATIONS {
int id PK
string name
string slug UK
string plan
timestamp created_at
}
USERS ||--o{ PROJECTS : creates
USERS {
int id PK
int organization_id FK
string email UK
string name
string role
timestamp created_at
}
PROJECTS ||--o{ TASKS : contains
PROJECTS {
int id PK
int organization_id FK
int owner_id FK
string name
text description
string status
timestamp created_at
}
TASKS ||--o{ COMMENTS : has
TASKS {
int id PK
int project_id FK
int assignee_id FK
string title
text description
string priority
string status
timestamp due_date
timestamp created_at
}
USERS ||--o{ COMMENTS : writes
COMMENTS {
int id PK
int task_id FK
int user_id FK
text content
timestamp created_at
}
USERS ||--o{ TASKS : "assigned to"
Blog Platform Schema
erDiagram
USERS ||--o{ POSTS : authors
USERS ||--o{ COMMENTS : writes
USERS {
int id PK
string username UK
string email UK
string bio
string avatar_url
timestamp created_at
}
POSTS ||--o{ COMMENTS : receives
POSTS ||--o{ POST_TAGS : has
POSTS {
int id PK
int author_id FK
string title
string slug UK
text content
string status
timestamp published_at
timestamp created_at
timestamp updated_at
}
COMMENTS ||--o{ COMMENTS : replies
COMMENTS {
int id PK
int post_id FK
int user_id FK
int parent_id FK "NULL allowed"
text content
timestamp created_at
}
TAGS ||--o{ POST_TAGS : tagged
TAGS {
int id PK
string name UK
string slug UK
}
POST_TAGS {
int post_id FK
int tag_id FK
}
Schema Documentation Formats
Markdown Table Format
# Database Schema Documentation
## Users Table
| Column | Type | Constraints | Description |
|--------|------|-------------|-------------|
| id | INTEGER | PRIMARY KEY, AUTO_INCREMENT | Unique user identifier |
| username | VARCHAR(50) | UNIQUE, NOT NULL | User's login name |
| email | VARCHAR(255) | UNIQUE, NOT NULL | User's email address |
| password_hash | VARCHAR(255) | NOT NULL | Bcrypt hashed password |
| active | BOOLEAN | DEFAULT true | Account active status |
| created_at | TIMESTAMP | DEFAULT NOW() | Account creation time |
| updated_at | TIMESTAMP | DEFAULT NOW() | Last update time |
**Indexes:**
- `idx_users_email` on (email)
- `idx_users_username` on (username)
**Foreign Keys:**
- None
---
## Orders Table
| Column | Type | Constraints | Description |
|--------|------|-------------|-------------|
| id | INTEGER | PRIMARY KEY, AUTO_INCREMENT | Unique order identifier |
| user_id | INTEGER | FOREIGN KEY (users.id), NOT NULL | Reference to user |
| total_amount | DECIMAL(10,2) | NOT NULL | Order total amount |
| status | VARCHAR(20) | NOT NULL, DEFAULT 'pending' | Order status |
| created_at | TIMESTAMP | DEFAULT NOW() | Order creation time |
| updated_at | TIMESTAMP | DEFAULT NOW() | Last update time |
**Indexes:**
- `idx_orders_user_id` on (user_id)
- `idx_orders_status` on (status)
- `idx_orders_created_at` on (created_at)
**Foreign Keys:**
- `fk_orders_user_id` FOREIGN KEY (user_id) REFERENCES users(id) ON DELETE CASCADE
**Check Constraints:**
- `chk_orders_total_amount` CHECK (total_amount >= 0)
- `chk_orders_status` CHECK (status IN ('pending', 'processing', 'completed', 'cancelled'))
JSON Schema Format
{
"database": "ecommerce",
"tables": {
"users": {
"columns": {
"id": {
"type": "INTEGER",
"primaryKey": true,
"autoIncrement": true,
"nullable": false
},
"username": {
"type": "VARCHAR(50)",
"unique": true,
"nullable": false
},
"email": {
"type": "VARCHAR(255)",
"unique": true,
"nullable": false
},
"active": {
"type": "BOOLEAN",
"default": true,
"nullable": false
},
"created_at": {
"type": "TIMESTAMP",
"default": "NOW()",
"nullable": false
}
},
"indexes": [
{
"name": "idx_users_email",
"columns": ["email"],
"unique": true
}
],
"foreignKeys": []
},
"orders": {
"columns": {
"id": {
"type": "INTEGER",
"primaryKey": true,
"autoIncrement": true
},
"user_id": {
"type": "INTEGER",
"nullable": false
},
"total_amount": {
"type": "DECIMAL(10,2)",
"nullable": false
},
"status": {
"type": "VARCHAR(20)",
"default": "pending"
}
},
"indexes": [
{
"name": "idx_orders_user_id",
"columns": ["user_id"]
}
],
"foreignKeys": [
{
"name": "fk_orders_user_id",
"column": "user_id",
"references": {
"table": "users",
"column": "id"
},
"onDelete": "CASCADE",
"onUpdate": "CASCADE"
}
]
}
}
}
Extracting Schema from ORM Models
From Prisma Schema
// schema.prisma
model User {
id Int @id @default(autoincrement())
email String @unique
username String @unique
active Boolean @default(true)
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
orders Order[]
reviews Review[]
@@index([email])
@@map("users")
}
model Order {
id Int @id @default(autoincrement())
userId Int
totalAmount Decimal @db.Decimal(10, 2)
status String @default("pending")
createdAt DateTime @default(now())
user User @relation(fields: [userId], references: [id], onDelete: Cascade)
items OrderItem[]
@@index([userId])
@@index([status])
@@map("orders")
}
Generated Visualization:
erDiagram
USERS ||--o{ ORDERS : "has many"
USERS ||--o{ REVIEWS : "has many"
USERS {
int id PK
string email UK
string username UK
boolean active
datetime created_at
datetime updated_at
}
ORDERS {
int id PK
int user_id FK
decimal total_amount
string status
datetime created_at
}
From TypeORM Entities
// user.entity.ts
@Entity('users')
export class User {
@PrimaryGeneratedColumn()
id: number;
@Column({ unique: true })
email: string;
@Column({ unique: true })
username: string;
@Column({ default: true })
active: boolean;
@CreateDateColumn()
createdAt: Date;
@UpdateDateColumn()
updatedAt: Date;
@OneToMany(() => Order, order => order.user)
orders: Order[];
@Index()
@Column()
organizationId: number;
}
// order.entity.ts
@Entity('orders')
export class Order {
@PrimaryGeneratedColumn()
id: number;
@Column()
userId: number;
@Column('decimal', { precision: 10, scale: 2 })
totalAmount: number;
@Column({ default: 'pending' })
status: string;
@ManyToOne(() => User, user => user.orders, { onDelete: 'CASCADE' })
@JoinColumn({ name: 'userId' })
user: User;
@OneToMany(() => OrderItem, item => item.order)
items: OrderItem[];
}
From SQLAlchemy Models
# models.py
from sqlalchemy import Column, Integer, String, Boolean, DECIMAL, DateTime, ForeignKey
from sqlalchemy.orm import relationship
from datetime import datetime
class User(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True, autoincrement=True)
email = Column(String(255), unique=True, nullable=False, index=True)
username = Column(String(50), unique=True, nullable=False)
active = Column(Boolean, default=True)
created_at = Column(DateTime, default=datetime.utcnow)
updated_at = Column(DateTime, default=datetime.utcnow, onupdate=datetime.utcnow)
# Relationships
orders = relationship('Order', back_populates='user', cascade='all, delete-orphan')
reviews = relationship('Review', back_populates='user')
class Order(Base):
__tablename__ = 'orders'
id = Column(Integer, primary_key=True, autoincrement=True)
user_id = Column(Integer, ForeignKey('users.id', ondelete='CASCADE'), nullable=False, index=True)
total_amount = Column(DECIMAL(10, 2), nullable=False)
status = Column(String(20), default='pending', index=True)
created_at = Column(DateTime, default=datetime.utcnow)
# Relationships
user = relationship('User', back_populates='orders')
items = relationship('OrderItem', back_populates='order')
Schema Analysis Features
Relationship Cardinality Detection
# Relationship Analysis
## One-to-Many Relationships
- Users → Orders (One user can have many orders)
- Products → OrderItems (One product can be in many orders)
- Categories → Products (One category can have many products)
## Many-to-Many Relationships
- Posts ↔ Tags (Through post_tags junction table)
- Users ↔ Roles (Through user_roles junction table)
## One-to-One Relationships
- Users → UserProfiles (One user has one profile)
Missing Indexes Detection
# Schema Health Report
## Missing Indexes
⚠️ **High Priority:**
- `orders.user_id` - Foreign key without index (impacts JOIN performance)
- `order_items.product_id` - Foreign key without index
⚠️ **Medium Priority:**
- `users.email` - Frequently used in WHERE clauses
- `products.category_id` - Used in JOIN operations
## Suggested Index Additions:
```sql
CREATE INDEX idx_orders_user_id ON orders(user_id);
CREATE INDEX idx_order_items_product_id ON order_items(product_id);
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_products_category_id ON products(category_id);
-- Composite index for common query pattern
CREATE INDEX idx_orders_user_status ON orders(user_id, status);
Normalization Analysis
# Database Normalization Report
## Current Normalization Level: 3NF
### First Normal Form (1NF) ✓
- All tables have primary keys
- No repeating groups
- Atomic values in all columns
### Second Normal Form (2NF) ✓
- All tables in 1NF
- No partial dependencies on composite keys
### Third Normal Form (3NF) ✓
- All tables in 2NF
- No transitive dependencies
### Potential Improvements:
**Denormalization Opportunities (for performance):**
- Add `user_name` to `orders` table to avoid JOIN for display
- Cache `order_count` in `users` table
- Store `product_name` in `order_items` for historical accuracy
**Further Normalization Suggestions:**
- Extract address fields from `users` to separate `addresses` table
- Split `products.description` to separate `product_details` table if frequently unused
dbdiagram.io Format
// Use dbdiagram.io to visualize this schema
Table users {
id int [pk, increment]
username varchar(50) [unique, not null]
email varchar(255) [unique, not null]
password_hash varchar(255) [not null]
active boolean [default: true]
created_at timestamp [default: `now()`]
updated_at timestamp [default: `now()`]
Indexes {
email [unique]
username [unique]
}
}
Table orders {
id int [pk, increment]
user_id int [not null, ref: > users.id]
total_amount decimal(10,2) [not null]
status varchar(20) [default: 'pending']
created_at timestamp [default: `now()`]
updated_at timestamp [default: `now()`]
Indexes {
user_id
status
created_at
}
}
Table products {
id int [pk, increment]
name varchar(255) [not null]
description text
price decimal(10,2) [not null]
stock_quantity int [default: 0]
category_id int [ref: > categories.id]
created_at timestamp [default: `now()`]
Indexes {
category_id
(name, category_id) [name: 'idx_product_category']
}
}
Table order_items {
id int [pk, increment]
order_id int [not null, ref: > orders.id]
product_id int [not null, ref: > products.id]
quantity int [not null]
price decimal(10,2) [not null]
Indexes {
order_id
product_id
}
}
Table categories {
id int [pk, increment]
name varchar(100) [unique, not null]
parent_id int [ref: > categories.id]
created_at timestamp [default: `now()`]
}
Table reviews {
id int [pk, increment]
user_id int [not null, ref: > users.id]
product_id int [not null, ref: > products.id]
rating int [not null, note: '1-5']
comment text
created_at timestamp [default: `now()`]
Indexes {
(user_id, product_id) [unique]
product_id
}
}
PlantUML Format
@startuml
entity "users" as users {
*id : int <<PK>>
--
*username : varchar(50) <<UK>>
*email : varchar(255) <<UK>>
*password_hash : varchar(255)
active : boolean
created_at : timestamp
updated_at : timestamp
}
entity "orders" as orders {
*id : int <<PK>>
--
*user_id : int <<FK>>
*total_amount : decimal(10,2)
status : varchar(20)
created_at : timestamp
updated_at : timestamp
}
entity "products" as products {
*id : int <<PK>>
--
*name : varchar(255)
description : text
*price : decimal(10,2)
stock_quantity : int
category_id : int <<FK>>
created_at : timestamp
}
entity "order_items" as order_items {
*id : int <<PK>>
--
*order_id : int <<FK>>
*product_id : int <<FK>>
*quantity : int
*price : decimal(10,2)
}
entity "categories" as categories {
*id : int <<PK>>
--
*name : varchar(100)
parent_id : int <<FK>>
created_at : timestamp
}
users ||--o{ orders
orders ||--|{ order_items
products ||--o{ order_items
categories ||--o{ products
categories ||--o{ categories : "parent/child"
@enduml
Schema Comparison
# Schema Comparison: Production vs Staging
## New Tables in Staging:
- `notifications` - User notification system
- `audit_logs` - Activity tracking
## Modified Tables:
### users
**Added columns:**
- `last_login_at` (timestamp)
- `email_verified` (boolean)
**Removed columns:**
- `legacy_id` (deprecated)
### orders
**Modified columns:**
- `total_amount`: DECIMAL(8,2) → DECIMAL(10,2) (increased precision)
**Added indexes:**
- `idx_orders_created_at` on (created_at)
## Migration Script:
```sql
-- Add new columns
ALTER TABLE users ADD COLUMN last_login_at TIMESTAMP;
ALTER TABLE users ADD COLUMN email_verified BOOLEAN DEFAULT false;
ALTER TABLE users DROP COLUMN legacy_id;
-- Modify column type
ALTER TABLE orders ALTER COLUMN total_amount TYPE DECIMAL(10,2);
-- Add new index
CREATE INDEX idx_orders_created_at ON orders(created_at);
-- Create new tables
CREATE TABLE notifications (
id SERIAL PRIMARY KEY,
user_id INTEGER NOT NULL REFERENCES users(id),
type VARCHAR(50) NOT NULL,
message TEXT NOT NULL,
read BOOLEAN DEFAULT false,
created_at TIMESTAMP DEFAULT NOW()
);
Best Practices
- Always visualize before making changes - Understand impact
- Document relationship cardinality - One-to-many, many-to-many
- Include indexes in diagrams - Performance consideration
- Show foreign key constraints - Data integrity
- Use consistent naming conventions - Improve readability
- Version control schema changes - Track evolution
- Generate diagrams from code - Keep in sync
- Include constraints and checks - Business rules
- Document enum values - Valid states
- Keep diagrams up to date - Living documentation
Tools Integration
Generate from Database
# PostgreSQL - using pg_dump
pg_dump -s -d mydb > schema.sql
# MySQL - schema only
mysqldump --no-data mydb > schema.sql
# Using SchemaSpy (generates HTML visualization)
java -jar schemaspy.jar -t pgsql -db mydb -u user -p password -o output
# Using DBeaver (export ERD)
# File → Export → Database Structure → ERD
Generate from ORM
# Prisma - generate ERD
npx prisma generate
npx prisma studio
# TypeORM - generate migration
npx typeorm migration:generate -n InitialSchema
# Django - generate ERD
python manage.py graph_models -a -o erd.png
# Rails - generate ERD
bundle exec rails erd
Notes
- Update diagrams when schema changes
- Include constraints and indexes in visualization
- Use consistent colors for entity types
- Generate documentation automatically from schema
- Version control schema visualization files
- Consider using database documentation tools (SchemaSpy, dbdocs)
- Keep ERDs readable - split large schemas into logical domains
Quick Install
/plugin add https://github.com/CuriousLearner/devkit/tree/main/schema-visualizerCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
Algorithmic Art Generation
MetaThis skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.
webapp-testing
TestingThis Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.
requesting-code-review
DesignThis skill dispatches a code-reviewer subagent to analyze code changes against requirements before proceeding. It should be used after completing tasks, implementing major features, or before merging to main. The review helps catch issues early by comparing the current implementation with the original plan.
