grafana-dashboards
About
This skill enables developers to create and manage production-ready Grafana dashboards for real-time monitoring and observability. It helps visualize system metrics, application performance, and business KPIs from sources like Prometheus. Use it when building operational dashboards, implementing SLO monitoring, or tracking infrastructure health.
Documentation
Grafana Dashboards
Create and manage production-ready Grafana dashboards for comprehensive system observability.
Purpose
Design effective Grafana dashboards for monitoring applications, infrastructure, and business metrics.
When to Use
- Visualize Prometheus metrics
- Create custom dashboards
- Implement SLO dashboards
- Monitor infrastructure
- Track business KPIs
Dashboard Design Principles
1. Hierarchy of Information
┌─────────────────────────────────────┐
│ Critical Metrics (Big Numbers) │
├─────────────────────────────────────┤
│ Key Trends (Time Series) │
├─────────────────────────────────────┤
│ Detailed Metrics (Tables/Heatmaps) │
└─────────────────────────────────────┘
2. RED Method (Services)
- Rate - Requests per second
- Errors - Error rate
- Duration - Latency/response time
3. USE Method (Resources)
- Utilization - % time resource is busy
- Saturation - Queue length/wait time
- Errors - Error count
Dashboard Structure
API Monitoring Dashboard
{
"dashboard": {
"title": "API Monitoring",
"tags": ["api", "production"],
"timezone": "browser",
"refresh": "30s",
"panels": [
{
"title": "Request Rate",
"type": "graph",
"targets": [
{
"expr": "sum(rate(http_requests_total[5m])) by (service)",
"legendFormat": "{{service}}"
}
],
"gridPos": {"x": 0, "y": 0, "w": 12, "h": 8}
},
{
"title": "Error Rate %",
"type": "graph",
"targets": [
{
"expr": "(sum(rate(http_requests_total{status=~\"5..\"}[5m])) / sum(rate(http_requests_total[5m]))) * 100",
"legendFormat": "Error Rate"
}
],
"alert": {
"conditions": [
{
"evaluator": {"params": [5], "type": "gt"},
"operator": {"type": "and"},
"query": {"params": ["A", "5m", "now"]},
"type": "query"
}
]
},
"gridPos": {"x": 12, "y": 0, "w": 12, "h": 8}
},
{
"title": "P95 Latency",
"type": "graph",
"targets": [
{
"expr": "histogram_quantile(0.95, sum(rate(http_request_duration_seconds_bucket[5m])) by (le, service))",
"legendFormat": "{{service}}"
}
],
"gridPos": {"x": 0, "y": 8, "w": 24, "h": 8}
}
]
}
}
Reference: See assets/api-dashboard.json
Panel Types
1. Stat Panel (Single Value)
{
"type": "stat",
"title": "Total Requests",
"targets": [{
"expr": "sum(http_requests_total)"
}],
"options": {
"reduceOptions": {
"values": false,
"calcs": ["lastNotNull"]
},
"orientation": "auto",
"textMode": "auto",
"colorMode": "value"
},
"fieldConfig": {
"defaults": {
"thresholds": {
"mode": "absolute",
"steps": [
{"value": 0, "color": "green"},
{"value": 80, "color": "yellow"},
{"value": 90, "color": "red"}
]
}
}
}
}
2. Time Series Graph
{
"type": "graph",
"title": "CPU Usage",
"targets": [{
"expr": "100 - (avg by (instance) (rate(node_cpu_seconds_total{mode=\"idle\"}[5m])) * 100)"
}],
"yaxes": [
{"format": "percent", "max": 100, "min": 0},
{"format": "short"}
]
}
3. Table Panel
{
"type": "table",
"title": "Service Status",
"targets": [{
"expr": "up",
"format": "table",
"instant": true
}],
"transformations": [
{
"id": "organize",
"options": {
"excludeByName": {"Time": true},
"indexByName": {},
"renameByName": {
"instance": "Instance",
"job": "Service",
"Value": "Status"
}
}
}
]
}
4. Heatmap
{
"type": "heatmap",
"title": "Latency Heatmap",
"targets": [{
"expr": "sum(rate(http_request_duration_seconds_bucket[5m])) by (le)",
"format": "heatmap"
}],
"dataFormat": "tsbuckets",
"yAxis": {
"format": "s"
}
}
Variables
Query Variables
{
"templating": {
"list": [
{
"name": "namespace",
"type": "query",
"datasource": "Prometheus",
"query": "label_values(kube_pod_info, namespace)",
"refresh": 1,
"multi": false
},
{
"name": "service",
"type": "query",
"datasource": "Prometheus",
"query": "label_values(kube_service_info{namespace=\"$namespace\"}, service)",
"refresh": 1,
"multi": true
}
]
}
}
Use Variables in Queries
sum(rate(http_requests_total{namespace="$namespace", service=~"$service"}[5m]))
Alerts in Dashboards
{
"alert": {
"name": "High Error Rate",
"conditions": [
{
"evaluator": {
"params": [5],
"type": "gt"
},
"operator": {"type": "and"},
"query": {
"params": ["A", "5m", "now"]
},
"reducer": {"type": "avg"},
"type": "query"
}
],
"executionErrorState": "alerting",
"for": "5m",
"frequency": "1m",
"message": "Error rate is above 5%",
"noDataState": "no_data",
"notifications": [
{"uid": "slack-channel"}
]
}
}
Dashboard Provisioning
dashboards.yml:
apiVersion: 1
providers:
- name: 'default'
orgId: 1
folder: 'General'
type: file
disableDeletion: false
updateIntervalSeconds: 10
allowUiUpdates: true
options:
path: /etc/grafana/dashboards
Common Dashboard Patterns
Infrastructure Dashboard
Key Panels:
- CPU utilization per node
- Memory usage per node
- Disk I/O
- Network traffic
- Pod count by namespace
- Node status
Reference: See assets/infrastructure-dashboard.json
Database Dashboard
Key Panels:
- Queries per second
- Connection pool usage
- Query latency (P50, P95, P99)
- Active connections
- Database size
- Replication lag
- Slow queries
Reference: See assets/database-dashboard.json
Application Dashboard
Key Panels:
- Request rate
- Error rate
- Response time (percentiles)
- Active users/sessions
- Cache hit rate
- Queue length
Best Practices
- Start with templates (Grafana community dashboards)
- Use consistent naming for panels and variables
- Group related metrics in rows
- Set appropriate time ranges (default: Last 6 hours)
- Use variables for flexibility
- Add panel descriptions for context
- Configure units correctly
- Set meaningful thresholds for colors
- Use consistent colors across dashboards
- Test with different time ranges
Dashboard as Code
Terraform Provisioning
resource "grafana_dashboard" "api_monitoring" {
config_json = file("${path.module}/dashboards/api-monitoring.json")
folder = grafana_folder.monitoring.id
}
resource "grafana_folder" "monitoring" {
title = "Production Monitoring"
}
Ansible Provisioning
- name: Deploy Grafana dashboards
copy:
src: "{{ item }}"
dest: /etc/grafana/dashboards/
with_fileglob:
- "dashboards/*.json"
notify: restart grafana
Reference Files
assets/api-dashboard.json- API monitoring dashboardassets/infrastructure-dashboard.json- Infrastructure dashboardassets/database-dashboard.json- Database monitoring dashboardreferences/dashboard-design.md- Dashboard design guide
Related Skills
prometheus-configuration- For metric collectionslo-implementation- For SLO dashboards
Quick Install
/plugin add https://github.com/camoneart/claude-code/tree/main/grafana-dashboardsCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
webapp-testing
TestingThis Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.
business-rule-documentation
MetaThis skill provides standardized templates for systematically documenting business logic and domain knowledge following Domain-Driven Design principles. It helps developers capture business rules, process flows, decision trees, and terminology glossaries to maintain consistency between requirements and implementation. Use it when documenting domain models, creating business rule repositories, or bridging communication between business and technical teams.
csv-data-summarizer
MetaThis skill automatically analyzes CSV files to generate comprehensive statistical summaries and visualizations using Python's pandas and matplotlib/seaborn. It should be triggered whenever a user uploads or references CSV data without prompting for analysis preferences. The tool provides immediate insights into data structure, quality, and patterns through automated analysis and visualization.
