Back to Skills

grafana-dashboards

camoneart
Updated Today
36 views
2
2
View on GitHub
Metadesign

About

This skill enables developers to create and manage production-ready Grafana dashboards for real-time monitoring and observability. It helps visualize system metrics, application performance, and business KPIs from sources like Prometheus. Use it when building operational dashboards, implementing SLO monitoring, or tracking infrastructure health.

Documentation

Grafana Dashboards

Create and manage production-ready Grafana dashboards for comprehensive system observability.

Purpose

Design effective Grafana dashboards for monitoring applications, infrastructure, and business metrics.

When to Use

  • Visualize Prometheus metrics
  • Create custom dashboards
  • Implement SLO dashboards
  • Monitor infrastructure
  • Track business KPIs

Dashboard Design Principles

1. Hierarchy of Information

┌─────────────────────────────────────┐
│  Critical Metrics (Big Numbers)     │
├─────────────────────────────────────┤
│  Key Trends (Time Series)           │
├─────────────────────────────────────┤
│  Detailed Metrics (Tables/Heatmaps) │
└─────────────────────────────────────┘

2. RED Method (Services)

  • Rate - Requests per second
  • Errors - Error rate
  • Duration - Latency/response time

3. USE Method (Resources)

  • Utilization - % time resource is busy
  • Saturation - Queue length/wait time
  • Errors - Error count

Dashboard Structure

API Monitoring Dashboard

{
  "dashboard": {
    "title": "API Monitoring",
    "tags": ["api", "production"],
    "timezone": "browser",
    "refresh": "30s",
    "panels": [
      {
        "title": "Request Rate",
        "type": "graph",
        "targets": [
          {
            "expr": "sum(rate(http_requests_total[5m])) by (service)",
            "legendFormat": "{{service}}"
          }
        ],
        "gridPos": {"x": 0, "y": 0, "w": 12, "h": 8}
      },
      {
        "title": "Error Rate %",
        "type": "graph",
        "targets": [
          {
            "expr": "(sum(rate(http_requests_total{status=~\"5..\"}[5m])) / sum(rate(http_requests_total[5m]))) * 100",
            "legendFormat": "Error Rate"
          }
        ],
        "alert": {
          "conditions": [
            {
              "evaluator": {"params": [5], "type": "gt"},
              "operator": {"type": "and"},
              "query": {"params": ["A", "5m", "now"]},
              "type": "query"
            }
          ]
        },
        "gridPos": {"x": 12, "y": 0, "w": 12, "h": 8}
      },
      {
        "title": "P95 Latency",
        "type": "graph",
        "targets": [
          {
            "expr": "histogram_quantile(0.95, sum(rate(http_request_duration_seconds_bucket[5m])) by (le, service))",
            "legendFormat": "{{service}}"
          }
        ],
        "gridPos": {"x": 0, "y": 8, "w": 24, "h": 8}
      }
    ]
  }
}

Reference: See assets/api-dashboard.json

Panel Types

1. Stat Panel (Single Value)

{
  "type": "stat",
  "title": "Total Requests",
  "targets": [{
    "expr": "sum(http_requests_total)"
  }],
  "options": {
    "reduceOptions": {
      "values": false,
      "calcs": ["lastNotNull"]
    },
    "orientation": "auto",
    "textMode": "auto",
    "colorMode": "value"
  },
  "fieldConfig": {
    "defaults": {
      "thresholds": {
        "mode": "absolute",
        "steps": [
          {"value": 0, "color": "green"},
          {"value": 80, "color": "yellow"},
          {"value": 90, "color": "red"}
        ]
      }
    }
  }
}

2. Time Series Graph

{
  "type": "graph",
  "title": "CPU Usage",
  "targets": [{
    "expr": "100 - (avg by (instance) (rate(node_cpu_seconds_total{mode=\"idle\"}[5m])) * 100)"
  }],
  "yaxes": [
    {"format": "percent", "max": 100, "min": 0},
    {"format": "short"}
  ]
}

3. Table Panel

{
  "type": "table",
  "title": "Service Status",
  "targets": [{
    "expr": "up",
    "format": "table",
    "instant": true
  }],
  "transformations": [
    {
      "id": "organize",
      "options": {
        "excludeByName": {"Time": true},
        "indexByName": {},
        "renameByName": {
          "instance": "Instance",
          "job": "Service",
          "Value": "Status"
        }
      }
    }
  ]
}

4. Heatmap

{
  "type": "heatmap",
  "title": "Latency Heatmap",
  "targets": [{
    "expr": "sum(rate(http_request_duration_seconds_bucket[5m])) by (le)",
    "format": "heatmap"
  }],
  "dataFormat": "tsbuckets",
  "yAxis": {
    "format": "s"
  }
}

Variables

Query Variables

{
  "templating": {
    "list": [
      {
        "name": "namespace",
        "type": "query",
        "datasource": "Prometheus",
        "query": "label_values(kube_pod_info, namespace)",
        "refresh": 1,
        "multi": false
      },
      {
        "name": "service",
        "type": "query",
        "datasource": "Prometheus",
        "query": "label_values(kube_service_info{namespace=\"$namespace\"}, service)",
        "refresh": 1,
        "multi": true
      }
    ]
  }
}

Use Variables in Queries

sum(rate(http_requests_total{namespace="$namespace", service=~"$service"}[5m]))

Alerts in Dashboards

{
  "alert": {
    "name": "High Error Rate",
    "conditions": [
      {
        "evaluator": {
          "params": [5],
          "type": "gt"
        },
        "operator": {"type": "and"},
        "query": {
          "params": ["A", "5m", "now"]
        },
        "reducer": {"type": "avg"},
        "type": "query"
      }
    ],
    "executionErrorState": "alerting",
    "for": "5m",
    "frequency": "1m",
    "message": "Error rate is above 5%",
    "noDataState": "no_data",
    "notifications": [
      {"uid": "slack-channel"}
    ]
  }
}

Dashboard Provisioning

dashboards.yml:

apiVersion: 1

providers:
  - name: 'default'
    orgId: 1
    folder: 'General'
    type: file
    disableDeletion: false
    updateIntervalSeconds: 10
    allowUiUpdates: true
    options:
      path: /etc/grafana/dashboards

Common Dashboard Patterns

Infrastructure Dashboard

Key Panels:

  • CPU utilization per node
  • Memory usage per node
  • Disk I/O
  • Network traffic
  • Pod count by namespace
  • Node status

Reference: See assets/infrastructure-dashboard.json

Database Dashboard

Key Panels:

  • Queries per second
  • Connection pool usage
  • Query latency (P50, P95, P99)
  • Active connections
  • Database size
  • Replication lag
  • Slow queries

Reference: See assets/database-dashboard.json

Application Dashboard

Key Panels:

  • Request rate
  • Error rate
  • Response time (percentiles)
  • Active users/sessions
  • Cache hit rate
  • Queue length

Best Practices

  1. Start with templates (Grafana community dashboards)
  2. Use consistent naming for panels and variables
  3. Group related metrics in rows
  4. Set appropriate time ranges (default: Last 6 hours)
  5. Use variables for flexibility
  6. Add panel descriptions for context
  7. Configure units correctly
  8. Set meaningful thresholds for colors
  9. Use consistent colors across dashboards
  10. Test with different time ranges

Dashboard as Code

Terraform Provisioning

resource "grafana_dashboard" "api_monitoring" {
  config_json = file("${path.module}/dashboards/api-monitoring.json")
  folder      = grafana_folder.monitoring.id
}

resource "grafana_folder" "monitoring" {
  title = "Production Monitoring"
}

Ansible Provisioning

- name: Deploy Grafana dashboards
  copy:
    src: "{{ item }}"
    dest: /etc/grafana/dashboards/
  with_fileglob:
    - "dashboards/*.json"
  notify: restart grafana

Reference Files

  • assets/api-dashboard.json - API monitoring dashboard
  • assets/infrastructure-dashboard.json - Infrastructure dashboard
  • assets/database-dashboard.json - Database monitoring dashboard
  • references/dashboard-design.md - Dashboard design guide

Related Skills

  • prometheus-configuration - For metric collection
  • slo-implementation - For SLO dashboards

Quick Install

/plugin add https://github.com/camoneart/claude-code/tree/main/grafana-dashboards

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

camoneart/claude-code
Path: skills/grafana-dashboards

Related Skills

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

webapp-testing

Testing

This Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.

View skill

business-rule-documentation

Meta

This skill provides standardized templates for systematically documenting business logic and domain knowledge following Domain-Driven Design principles. It helps developers capture business rules, process flows, decision trees, and terminology glossaries to maintain consistency between requirements and implementation. Use it when documenting domain models, creating business rule repositories, or bridging communication between business and technical teams.

View skill

csv-data-summarizer

Meta

This skill automatically analyzes CSV files to generate comprehensive statistical summaries and visualizations using Python's pandas and matplotlib/seaborn. It should be triggered whenever a user uploads or references CSV data without prompting for analysis preferences. The tool provides immediate insights into data structure, quality, and patterns through automated analysis and visualization.

View skill