typescript-advanced-types
About
This skill teaches advanced TypeScript type system features like generics, conditional types, and utility types to build robust, type-safe applications. Use it when implementing complex type logic, creating reusable type utilities, or ensuring compile-time type safety in your TypeScript projects. It's ideal for developing type-safe libraries, API clients, and generic components.
Documentation
TypeScript Advanced Types
Comprehensive guidance for mastering TypeScript's advanced type system including generics, conditional types, mapped types, template literal types, and utility types for building robust, type-safe applications.
When to Use This Skill
- Building type-safe libraries or frameworks
- Creating reusable generic components
- Implementing complex type inference logic
- Designing type-safe API clients
- Building form validation systems
- Creating strongly-typed configuration objects
- Implementing type-safe state management
- Migrating JavaScript codebases to TypeScript
Core Concepts
1. Generics
Purpose: Create reusable, type-flexible components while maintaining type safety.
Basic Generic Function:
function identity<T>(value: T): T {
return value;
}
const num = identity<number>(42); // Type: number
const str = identity<string>("hello"); // Type: string
const auto = identity(true); // Type inferred: boolean
Generic Constraints:
interface HasLength {
length: number;
}
function logLength<T extends HasLength>(item: T): T {
console.log(item.length);
return item;
}
logLength("hello"); // OK: string has length
logLength([1, 2, 3]); // OK: array has length
logLength({ length: 10 }); // OK: object has length
// logLength(42); // Error: number has no length
Multiple Type Parameters:
function merge<T, U>(obj1: T, obj2: U): T & U {
return { ...obj1, ...obj2 };
}
const merged = merge(
{ name: "John" },
{ age: 30 }
);
// Type: { name: string } & { age: number }
2. Conditional Types
Purpose: Create types that depend on conditions, enabling sophisticated type logic.
Basic Conditional Type:
type IsString<T> = T extends string ? true : false;
type A = IsString<string>; // true
type B = IsString<number>; // false
Extracting Return Types:
type ReturnType<T> = T extends (...args: any[]) => infer R ? R : never;
function getUser() {
return { id: 1, name: "John" };
}
type User = ReturnType<typeof getUser>;
// Type: { id: number; name: string; }
Distributive Conditional Types:
type ToArray<T> = T extends any ? T[] : never;
type StrOrNumArray = ToArray<string | number>;
// Type: string[] | number[]
Nested Conditions:
type TypeName<T> =
T extends string ? "string" :
T extends number ? "number" :
T extends boolean ? "boolean" :
T extends undefined ? "undefined" :
T extends Function ? "function" :
"object";
type T1 = TypeName<string>; // "string"
type T2 = TypeName<() => void>; // "function"
3. Mapped Types
Purpose: Transform existing types by iterating over their properties.
Basic Mapped Type:
type Readonly<T> = {
readonly [P in keyof T]: T[P];
};
interface User {
id: number;
name: string;
}
type ReadonlyUser = Readonly<User>;
// Type: { readonly id: number; readonly name: string; }
Optional Properties:
type Partial<T> = {
[P in keyof T]?: T[P];
};
type PartialUser = Partial<User>;
// Type: { id?: number; name?: string; }
Key Remapping:
type Getters<T> = {
[K in keyof T as `get${Capitalize<string & K>}`]: () => T[K]
};
interface Person {
name: string;
age: number;
}
type PersonGetters = Getters<Person>;
// Type: { getName: () => string; getAge: () => number; }
Filtering Properties:
type PickByType<T, U> = {
[K in keyof T as T[K] extends U ? K : never]: T[K]
};
interface Mixed {
id: number;
name: string;
age: number;
active: boolean;
}
type OnlyNumbers = PickByType<Mixed, number>;
// Type: { id: number; age: number; }
4. Template Literal Types
Purpose: Create string-based types with pattern matching and transformation.
Basic Template Literal:
type EventName = "click" | "focus" | "blur";
type EventHandler = `on${Capitalize<EventName>}`;
// Type: "onClick" | "onFocus" | "onBlur"
String Manipulation:
type UppercaseGreeting = Uppercase<"hello">; // "HELLO"
type LowercaseGreeting = Lowercase<"HELLO">; // "hello"
type CapitalizedName = Capitalize<"john">; // "John"
type UncapitalizedName = Uncapitalize<"John">; // "john"
Path Building:
type Path<T> = T extends object
? { [K in keyof T]: K extends string
? `${K}` | `${K}.${Path<T[K]>}`
: never
}[keyof T]
: never;
interface Config {
server: {
host: string;
port: number;
};
database: {
url: string;
};
}
type ConfigPath = Path<Config>;
// Type: "server" | "database" | "server.host" | "server.port" | "database.url"
5. Utility Types
Built-in Utility Types:
// Partial<T> - Make all properties optional
type PartialUser = Partial<User>;
// Required<T> - Make all properties required
type RequiredUser = Required<PartialUser>;
// Readonly<T> - Make all properties readonly
type ReadonlyUser = Readonly<User>;
// Pick<T, K> - Select specific properties
type UserName = Pick<User, "name" | "email">;
// Omit<T, K> - Remove specific properties
type UserWithoutPassword = Omit<User, "password">;
// Exclude<T, U> - Exclude types from union
type T1 = Exclude<"a" | "b" | "c", "a">; // "b" | "c"
// Extract<T, U> - Extract types from union
type T2 = Extract<"a" | "b" | "c", "a" | "b">; // "a" | "b"
// NonNullable<T> - Exclude null and undefined
type T3 = NonNullable<string | null | undefined>; // string
// Record<K, T> - Create object type with keys K and values T
type PageInfo = Record<"home" | "about", { title: string }>;
Advanced Patterns
Pattern 1: Type-Safe Event Emitter
type EventMap = {
"user:created": { id: string; name: string };
"user:updated": { id: string };
"user:deleted": { id: string };
};
class TypedEventEmitter<T extends Record<string, any>> {
private listeners: {
[K in keyof T]?: Array<(data: T[K]) => void>;
} = {};
on<K extends keyof T>(event: K, callback: (data: T[K]) => void): void {
if (!this.listeners[event]) {
this.listeners[event] = [];
}
this.listeners[event]!.push(callback);
}
emit<K extends keyof T>(event: K, data: T[K]): void {
const callbacks = this.listeners[event];
if (callbacks) {
callbacks.forEach(callback => callback(data));
}
}
}
const emitter = new TypedEventEmitter<EventMap>();
emitter.on("user:created", (data) => {
console.log(data.id, data.name); // Type-safe!
});
emitter.emit("user:created", { id: "1", name: "John" });
// emitter.emit("user:created", { id: "1" }); // Error: missing 'name'
Pattern 2: Type-Safe API Client
type HTTPMethod = "GET" | "POST" | "PUT" | "DELETE";
type EndpointConfig = {
"/users": {
GET: { response: User[] };
POST: { body: { name: string; email: string }; response: User };
};
"/users/:id": {
GET: { params: { id: string }; response: User };
PUT: { params: { id: string }; body: Partial<User>; response: User };
DELETE: { params: { id: string }; response: void };
};
};
type ExtractParams<T> = T extends { params: infer P } ? P : never;
type ExtractBody<T> = T extends { body: infer B } ? B : never;
type ExtractResponse<T> = T extends { response: infer R } ? R : never;
class APIClient<Config extends Record<string, Record<HTTPMethod, any>>> {
async request<
Path extends keyof Config,
Method extends keyof Config[Path]
>(
path: Path,
method: Method,
...[options]: ExtractParams<Config[Path][Method]> extends never
? ExtractBody<Config[Path][Method]> extends never
? []
: [{ body: ExtractBody<Config[Path][Method]> }]
: [{
params: ExtractParams<Config[Path][Method]>;
body?: ExtractBody<Config[Path][Method]>;
}]
): Promise<ExtractResponse<Config[Path][Method]>> {
// Implementation here
return {} as any;
}
}
const api = new APIClient<EndpointConfig>();
// Type-safe API calls
const users = await api.request("/users", "GET");
// Type: User[]
const newUser = await api.request("/users", "POST", {
body: { name: "John", email: "[email protected]" }
});
// Type: User
const user = await api.request("/users/:id", "GET", {
params: { id: "123" }
});
// Type: User
Pattern 3: Builder Pattern with Type Safety
type BuilderState<T> = {
[K in keyof T]: T[K] | undefined;
};
type RequiredKeys<T> = {
[K in keyof T]-?: {} extends Pick<T, K> ? never : K;
}[keyof T];
type OptionalKeys<T> = {
[K in keyof T]-?: {} extends Pick<T, K> ? K : never;
}[keyof T];
type IsComplete<T, S> =
RequiredKeys<T> extends keyof S
? S[RequiredKeys<T>] extends undefined
? false
: true
: false;
class Builder<T, S extends BuilderState<T> = {}> {
private state: S = {} as S;
set<K extends keyof T>(
key: K,
value: T[K]
): Builder<T, S & Record<K, T[K]>> {
this.state[key] = value;
return this as any;
}
build(
this: IsComplete<T, S> extends true ? this : never
): T {
return this.state as T;
}
}
interface User {
id: string;
name: string;
email: string;
age?: number;
}
const builder = new Builder<User>();
const user = builder
.set("id", "1")
.set("name", "John")
.set("email", "[email protected]")
.build(); // OK: all required fields set
// const incomplete = builder
// .set("id", "1")
// .build(); // Error: missing required fields
Pattern 4: Deep Readonly/Partial
type DeepReadonly<T> = {
readonly [P in keyof T]: T[P] extends object
? T[P] extends Function
? T[P]
: DeepReadonly<T[P]>
: T[P];
};
type DeepPartial<T> = {
[P in keyof T]?: T[P] extends object
? T[P] extends Array<infer U>
? Array<DeepPartial<U>>
: DeepPartial<T[P]>
: T[P];
};
interface Config {
server: {
host: string;
port: number;
ssl: {
enabled: boolean;
cert: string;
};
};
database: {
url: string;
pool: {
min: number;
max: number;
};
};
}
type ReadonlyConfig = DeepReadonly<Config>;
// All nested properties are readonly
type PartialConfig = DeepPartial<Config>;
// All nested properties are optional
Pattern 5: Type-Safe Form Validation
type ValidationRule<T> = {
validate: (value: T) => boolean;
message: string;
};
type FieldValidation<T> = {
[K in keyof T]?: ValidationRule<T[K]>[];
};
type ValidationErrors<T> = {
[K in keyof T]?: string[];
};
class FormValidator<T extends Record<string, any>> {
constructor(private rules: FieldValidation<T>) {}
validate(data: T): ValidationErrors<T> | null {
const errors: ValidationErrors<T> = {};
let hasErrors = false;
for (const key in this.rules) {
const fieldRules = this.rules[key];
const value = data[key];
if (fieldRules) {
const fieldErrors: string[] = [];
for (const rule of fieldRules) {
if (!rule.validate(value)) {
fieldErrors.push(rule.message);
}
}
if (fieldErrors.length > 0) {
errors[key] = fieldErrors;
hasErrors = true;
}
}
}
return hasErrors ? errors : null;
}
}
interface LoginForm {
email: string;
password: string;
}
const validator = new FormValidator<LoginForm>({
email: [
{
validate: (v) => v.includes("@"),
message: "Email must contain @"
},
{
validate: (v) => v.length > 0,
message: "Email is required"
}
],
password: [
{
validate: (v) => v.length >= 8,
message: "Password must be at least 8 characters"
}
]
});
const errors = validator.validate({
email: "invalid",
password: "short"
});
// Type: { email?: string[]; password?: string[]; } | null
Pattern 6: Discriminated Unions
type Success<T> = {
status: "success";
data: T;
};
type Error = {
status: "error";
error: string;
};
type Loading = {
status: "loading";
};
type AsyncState<T> = Success<T> | Error | Loading;
function handleState<T>(state: AsyncState<T>): void {
switch (state.status) {
case "success":
console.log(state.data); // Type: T
break;
case "error":
console.log(state.error); // Type: string
break;
case "loading":
console.log("Loading...");
break;
}
}
// Type-safe state machine
type State =
| { type: "idle" }
| { type: "fetching"; requestId: string }
| { type: "success"; data: any }
| { type: "error"; error: Error };
type Event =
| { type: "FETCH"; requestId: string }
| { type: "SUCCESS"; data: any }
| { type: "ERROR"; error: Error }
| { type: "RESET" };
function reducer(state: State, event: Event): State {
switch (state.type) {
case "idle":
return event.type === "FETCH"
? { type: "fetching", requestId: event.requestId }
: state;
case "fetching":
if (event.type === "SUCCESS") {
return { type: "success", data: event.data };
}
if (event.type === "ERROR") {
return { type: "error", error: event.error };
}
return state;
case "success":
case "error":
return event.type === "RESET" ? { type: "idle" } : state;
}
}
Type Inference Techniques
1. Infer Keyword
// Extract array element type
type ElementType<T> = T extends (infer U)[] ? U : never;
type NumArray = number[];
type Num = ElementType<NumArray>; // number
// Extract promise type
type PromiseType<T> = T extends Promise<infer U> ? U : never;
type AsyncNum = PromiseType<Promise<number>>; // number
// Extract function parameters
type Parameters<T> = T extends (...args: infer P) => any ? P : never;
function foo(a: string, b: number) {}
type FooParams = Parameters<typeof foo>; // [string, number]
2. Type Guards
function isString(value: unknown): value is string {
return typeof value === "string";
}
function isArrayOf<T>(
value: unknown,
guard: (item: unknown) => item is T
): value is T[] {
return Array.isArray(value) && value.every(guard);
}
const data: unknown = ["a", "b", "c"];
if (isArrayOf(data, isString)) {
data.forEach(s => s.toUpperCase()); // Type: string[]
}
3. Assertion Functions
function assertIsString(value: unknown): asserts value is string {
if (typeof value !== "string") {
throw new Error("Not a string");
}
}
function processValue(value: unknown) {
assertIsString(value);
// value is now typed as string
console.log(value.toUpperCase());
}
Best Practices
- Use
unknownoverany: Enforce type checking - Prefer
interfacefor object shapes: Better error messages - Use
typefor unions and complex types: More flexible - Leverage type inference: Let TypeScript infer when possible
- Create helper types: Build reusable type utilities
- Use const assertions: Preserve literal types
- Avoid type assertions: Use type guards instead
- Document complex types: Add JSDoc comments
- Use strict mode: Enable all strict compiler options
- Test your types: Use type tests to verify type behavior
Type Testing
// Type assertion tests
type AssertEqual<T, U> =
[T] extends [U]
? [U] extends [T]
? true
: false
: false;
type Test1 = AssertEqual<string, string>; // true
type Test2 = AssertEqual<string, number>; // false
type Test3 = AssertEqual<string | number, string>; // false
// Expect error helper
type ExpectError<T extends never> = T;
// Example usage
type ShouldError = ExpectError<AssertEqual<string, number>>;
Common Pitfalls
- Over-using
any: Defeats the purpose of TypeScript - Ignoring strict null checks: Can lead to runtime errors
- Too complex types: Can slow down compilation
- Not using discriminated unions: Misses type narrowing opportunities
- Forgetting readonly modifiers: Allows unintended mutations
- Circular type references: Can cause compiler errors
- Not handling edge cases: Like empty arrays or null values
Performance Considerations
- Avoid deeply nested conditional types
- Use simple types when possible
- Cache complex type computations
- Limit recursion depth in recursive types
- Use build tools to skip type checking in production
Resources
- TypeScript Handbook: https://www.typescriptlang.org/docs/handbook/
- Type Challenges: https://github.com/type-challenges/type-challenges
- TypeScript Deep Dive: https://basarat.gitbook.io/typescript/
- Effective TypeScript: Book by Dan Vanderkam
Quick Install
/plugin add https://github.com/camoneart/claude-code/tree/main/typescript-advanced-typesCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
webapp-testing
TestingThis Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.
business-rule-documentation
MetaThis skill provides standardized templates for systematically documenting business logic and domain knowledge following Domain-Driven Design principles. It helps developers capture business rules, process flows, decision trees, and terminology glossaries to maintain consistency between requirements and implementation. Use it when documenting domain models, creating business rule repositories, or bridging communication between business and technical teams.
csv-data-summarizer
MetaThis skill automatically analyzes CSV files to generate comprehensive statistical summaries and visualizations using Python's pandas and matplotlib/seaborn. It should be triggered whenever a user uploads or references CSV data without prompting for analysis preferences. The tool provides immediate insights into data structure, quality, and patterns through automated analysis and visualization.
