when-optimizing-prompts-use-prompt-architect
About
This skill provides a structured framework for developers to systematically analyze, refine, and optimize prompts for AI systems using evidence-based techniques. It helps eliminate anti-patterns and improve prompt structure, which is triggered by poor response quality or inconsistent outputs. The process includes A/B testing to validate effectiveness and produces an optimized prompt along with an analysis report.
Documentation
Prompt Architect - Evidence-Based Prompt Engineering
Overview
Comprehensive framework for analyzing, creating, and refining prompts for AI systems (Claude, GPT, etc.). Applies structural optimization, self-consistency patterns, and anti-pattern detection to transform prompts into highly effective versions.
When to Use This Skill
- Creating new prompts for AI systems
- Existing prompts produce poor results
- Inconsistent AI outputs
- Need to improve prompt clarity
- Applying evidence-based prompt engineering
- Optimizing agent instructions
- Building prompt libraries
Theoretical Foundation
Evidence-Based Techniques
- Chain-of-Thought (CoT): Explicit reasoning steps
- Self-Consistency: Multiple reasoning paths
- ReAct: Reasoning + Acting pattern
- Program-of-Thought: Structured logic
- Plan-and-Solve: Decomposition strategy
- Role-Playing: Persona assignment
- Few-Shot Learning: Example-based instruction
Prompt Structure Principles
[System Context] → [Role Definition] → [Task Description] →
[Constraints] → [Format Specification] → [Examples] → [Quality Criteria]
Phase 1: Analyze Current Prompt
Objective
Identify weaknesses and improvement opportunities
Agent: Researcher
Step 1.1: Structural Analysis
const promptAnalysis = {
components: {
hasSystemContext: checkForContext(prompt),
hasRoleDefinition: checkForRole(prompt),
hasTaskDescription: checkForTask(prompt),
hasConstraints: checkForConstraints(prompt),
hasFormatSpec: checkForFormat(prompt),
hasExamples: checkForExamples(prompt),
hasQualityCriteria: checkForCriteria(prompt)
},
metrics: {
length: prompt.length,
clarity: calculateClarity(prompt),
specificity: calculateSpecificity(prompt),
completeness: calculateCompleteness(prompt)
},
antiPatterns: detectAntiPatterns(prompt)
};
await memory.store('prompt-architect/analysis', promptAnalysis);
Step 1.2: Detect Anti-Patterns
const antiPatterns = [
{
name: 'Vague Instructions',
pattern: /please|try to|maybe|possibly/gi,
severity: 'HIGH',
fix: 'Use imperative commands: "Analyze...", "Generate...", "Create..."'
},
{
name: 'Missing Context',
pattern: absence of background info,
severity: 'HIGH',
fix: 'Add system context and domain information'
},
{
name: 'No Output Format',
pattern: absence of format specification,
severity: 'MEDIUM',
fix: 'Specify exact output format (JSON, markdown, etc.)'
},
{
name: 'Conflicting Instructions',
pattern: detectContradictions(prompt),
severity: 'HIGH',
fix: 'Resolve contradictions, prioritize requirements'
},
{
name: 'Implicit Assumptions',
pattern: detectImplicitAssumptions(prompt),
severity: 'MEDIUM',
fix: 'Make all assumptions explicit'
}
];
const foundAntiPatterns = antiPatterns.filter(ap =>
ap.pattern.test ? ap.pattern.test(prompt) : ap.pattern
);
await memory.store('prompt-architect/anti-patterns', foundAntiPatterns);
Step 1.3: Identify Missing Components
const missingComponents = [];
if (!promptAnalysis.components.hasSystemContext) {
missingComponents.push({
component: 'System Context',
importance: 'HIGH',
recommendation: 'Add background info, domain knowledge, constraints'
});
}
if (!promptAnalysis.components.hasExamples) {
missingComponents.push({
component: 'Examples',
importance: 'MEDIUM',
recommendation: 'Add 2-3 examples showing desired behavior'
});
}
// ... check other components
await memory.store('prompt-architect/missing', missingComponents);
Validation Criteria
- All 7 components checked
- Anti-patterns identified
- Missing components listed
- Severity assigned to issues
Hooks Integration
npx claude-flow@alpha hooks pre-task \
--description "Analyze prompt structure and quality" \
--complexity "medium"
npx claude-flow@alpha hooks post-task \
--task-id "prompt-analysis" \
--output "analysis-report.json"
Phase 2: Structure Optimization
Objective
Reorganize prompt for logical flow and clarity
Agent: Coder (Prompt Specialist)
Step 2.1: Apply Template Structure
const optimizedStructure = {
systemContext: {
domain: extractDomain(prompt),
background: generateContextualBackground(),
constraints: extractOrInferConstraints(prompt)
},
roleDefinition: {
persona: definePersona(task),
expertise: listRequiredExpertise(),
perspective: defineWorkingPerspective()
},
taskDescription: {
primary: extractPrimaryTask(prompt),
secondary: extractSecondaryTasks(prompt),
scope: defineScope(),
outOfScope: defineWhatNotToDo()
},
constraints: {
required: extractRequirements(prompt),
forbidden: extractProhibitions(prompt),
optional: extractPreferences(prompt)
},
formatSpecification: {
outputFormat: specifyFormat(),
structure: defineStructure(),
examples: []
},
qualityCriteria: {
success: defineSuccessCriteria(),
validation: defineValidationMethod(),
metrics: defineMetrics()
}
};
await memory.store('prompt-architect/structure', optimizedStructure);
Step 2.2: Build Optimized Prompt
# System Context
${optimizedStructure.systemContext.background}
Domain: ${optimizedStructure.systemContext.domain}
Constraints: ${optimizedStructure.systemContext.constraints.join(', ')}
# Role
You are ${optimizedStructure.roleDefinition.persona} with expertise in:
${optimizedStructure.roleDefinition.expertise.map(e => `- ${e}`).join('\n')}
Your perspective: ${optimizedStructure.roleDefinition.perspective}
# Task
Primary objective: ${optimizedStructure.taskDescription.primary}
${optimizedStructure.taskDescription.secondary.length > 0 ?
'Secondary objectives:\n' + optimizedStructure.taskDescription.secondary.map(t => `- ${t}`).join('\n') : ''}
Scope: ${optimizedStructure.taskDescription.scope}
Out of scope: ${optimizedStructure.taskDescription.outOfScope.join(', ')}
# Constraints
MUST: ${optimizedStructure.constraints.required.map(r => `- ${r}`).join('\n')}
MUST NOT: ${optimizedStructure.constraints.forbidden.map(f => `- ${f}`).join('\n')}
PREFER: ${optimizedStructure.constraints.optional.map(o => `- ${o}`).join('\n')}
# Output Format
${optimizedStructure.formatSpecification.outputFormat}
Structure:
${optimizedStructure.formatSpecification.structure}
# Quality Criteria
Success is defined as:
${optimizedStructure.qualityCriteria.success.map(s => `- ${s}`).join('\n')}
Validation method: ${optimizedStructure.qualityCriteria.validation}
Step 2.3: Add Progressive Disclosure
// For complex prompts, use hierarchical structure
const progressivePrompt = {
essential: generateEssentialInstructions(),
details: generateDetailedGuidance(),
advanced: generateAdvancedTechniques(),
examples: generateExamples(),
troubleshooting: generateTroubleshootingGuide()
};
// Structure with collapsible sections
const enhancedPrompt = `
${progressivePrompt.essential}
<details>
<summary>Detailed Guidance</summary>
${progressivePrompt.details}
</details>
<details>
<summary>Advanced Techniques</summary>
${progressivePrompt.advanced}
</details>
<details>
<summary>Examples</summary>
${progressivePrompt.examples}
</details>
`;
Validation Criteria
- All 7 components present
- Logical flow established
- Progressive disclosure applied
- Clear hierarchy visible
Script Template
#!/bin/bash
# optimize-structure.sh
INPUT_PROMPT="$1"
OUTPUT_PROMPT="$2"
# Analyze structure
ANALYSIS=$(npx claude-flow@alpha agent-spawn \
--type researcher \
--task "Analyze prompt structure: $(cat $INPUT_PROMPT)")
# Optimize
OPTIMIZED=$(npx claude-flow@alpha agent-spawn \
--type coder \
--task "Restructure prompt based on analysis: $ANALYSIS")
echo "$OPTIMIZED" > "$OUTPUT_PROMPT"
npx claude-flow@alpha hooks post-edit \
--file "$OUTPUT_PROMPT" \
--memory-key "prompt-architect/optimized"
Phase 3: Apply Evidence-Based Techniques
Objective
Incorporate proven prompt engineering methods
Agent: Researcher + Coder
Step 3.1: Add Chain-of-Thought
# Chain-of-Thought Enhancement
Before providing your final answer, think through the problem step by step:
1. **Understand**: Restate the problem in your own words
2. **Analyze**: Break down into components
3. **Reason**: Work through the logic
4. **Synthesize**: Combine insights
5. **Conclude**: Provide final answer
Format your response as:
<thinking>
[Your step-by-step reasoning]
</thinking>
<answer>
[Your final answer]
</answer>
Step 3.2: Add Self-Consistency
# Self-Consistency Pattern
Generate 3 independent solutions to this problem using different approaches:
Approach 1: [Method 1]
Approach 2: [Method 2]
Approach 3: [Method 3]
Then compare the solutions and select the most robust answer, explaining why it's superior.
Step 3.3: Add ReAct Pattern
# ReAct (Reasoning + Acting) Pattern
For each step in your process:
**Thought**: [What you're thinking]
**Action**: [What you're doing]
**Observation**: [What you learned]
Repeat this cycle until the task is complete.
Example:
Thought: I need to understand the data structure
Action: Analyze the schema
Observation: It's a relational database with 5 tables
Thought: I should check for relationships
Action: Examine foreign keys
Observation: Tables are connected via user_id
Step 3.4: Add Few-Shot Examples
const examples = [
{
input: '[Example input 1]',
reasoning: '[How to approach it]',
output: '[Expected output 1]'
},
{
input: '[Example input 2]',
reasoning: '[How to approach it]',
output: '[Expected output 2]'
},
{
input: '[Example input 3 - edge case]',
reasoning: '[How to handle edge case]',
output: '[Expected output 3]'
}
];
const fewShotSection = `
# Examples
${examples.map((ex, i) => `
## Example ${i + 1}
**Input**: ${ex.input}
**Reasoning**: ${ex.reasoning}
**Output**:
\`\`\`
${ex.output}
\`\`\`
`).join('\n')}
Now apply the same pattern to: [ACTUAL INPUT]
`;
Step 3.5: Add Constraint Framing
# Constraint-Based Optimization
This task requires balancing multiple constraints:
1. **Quality**: Must meet 90% accuracy
2. **Speed**: Must complete in < 2 seconds
3. **Resources**: Memory usage < 100MB
4. **Safety**: No external API calls
When these constraints conflict, prioritize in this order: Safety > Quality > Speed > Resources
If you cannot satisfy all constraints, explicitly state which ones are violated and why.
Validation Criteria
- CoT reasoning added
- Self-consistency pattern included
- Examples provided (2-3)
- Constraints clearly framed
Memory Pattern
npx claude-flow@alpha hooks post-edit \
--file "enhanced-prompt.md" \
--memory-key "prompt-architect/techniques-applied"
Phase 4: Validate Effectiveness
Objective
Test prompt performance and measure improvement
Agent: Researcher
Step 4.1: Define Test Cases
const testCases = [
{
id: 'test-1',
type: 'typical',
input: '[Common use case]',
expectedOutput: '[What should happen]',
successCriteria: '[How to measure success]'
},
{
id: 'test-2',
type: 'edge-case',
input: '[Unusual scenario]',
expectedOutput: '[How to handle]',
successCriteria: '[Validation method]'
},
{
id: 'test-3',
type: 'stress',
input: '[Complex/ambiguous input]',
expectedOutput: '[Robust handling]',
successCriteria: '[Quality threshold]'
}
];
await memory.store('prompt-architect/test-cases', testCases);
Step 4.2: Run A/B Tests
async function runABTest(originalPrompt, optimizedPrompt, testCases) {
const results = {
original: [],
optimized: []
};
for (const testCase of testCases) {
// Test original prompt
const originalResult = await testPrompt(originalPrompt, testCase.input);
results.original.push({
testId: testCase.id,
output: originalResult,
score: scoreOutput(originalResult, testCase.expectedOutput),
meetsSuccessCriteria: evaluateCriteria(originalResult, testCase.successCriteria)
});
// Test optimized prompt
const optimizedResult = await testPrompt(optimizedPrompt, testCase.input);
results.optimized.push({
testId: testCase.id,
output: optimizedResult,
score: scoreOutput(optimizedResult, testCase.expectedOutput),
meetsSuccessCriteria: evaluateCriteria(optimizedResult, testCase.successCriteria)
});
}
return results;
}
const abTestResults = await runABTest(originalPrompt, optimizedPrompt, testCases);
await memory.store('prompt-architect/ab-test-results', abTestResults);
Step 4.3: Calculate Metrics
const metrics = {
original: {
avgScore: calculateAverage(abTestResults.original.map(r => r.score)),
successRate: calculateSuccessRate(abTestResults.original),
consistency: calculateConsistency(abTestResults.original)
},
optimized: {
avgScore: calculateAverage(abTestResults.optimized.map(r => r.score)),
successRate: calculateSuccessRate(abTestResults.optimized),
consistency: calculateConsistency(abTestResults.optimized)
},
improvement: {
scoreImprovement: 0, // calculated below
successRateImprovement: 0,
consistencyImprovement: 0
}
};
metrics.improvement = {
scoreImprovement: ((metrics.optimized.avgScore - metrics.original.avgScore) / metrics.original.avgScore * 100).toFixed(2) + '%',
successRateImprovement: ((metrics.optimized.successRate - metrics.original.successRate) / metrics.original.successRate * 100).toFixed(2) + '%',
consistencyImprovement: ((metrics.optimized.consistency - metrics.original.consistency) / metrics.original.consistency * 100).toFixed(2) + '%'
};
await memory.store('prompt-architect/metrics', metrics);
Validation Criteria
- Test cases defined (3+ cases)
- A/B testing completed
- Metrics calculated
- Improvement demonstrated
Script Template
#!/bin/bash
# validate-prompt.sh
ORIGINAL="$1"
OPTIMIZED="$2"
TEST_CASES="$3"
# Run A/B tests
RESULTS=$(npx claude-flow@alpha agent-spawn \
--type researcher \
--task "A/B test prompts: original='$ORIGINAL' optimized='$OPTIMIZED' tests='$TEST_CASES'")
# Calculate improvement
METRICS=$(echo "$RESULTS" | jq '.improvement')
echo "Improvement Metrics:"
echo "$METRICS" | jq '.'
# Store results
npx claude-flow@alpha hooks post-task \
--task-id "prompt-validation" \
--metrics "$METRICS"
Phase 5: Refine Iteratively
Objective
Continuous improvement based on validation results
Agent: Coder
Step 5.1: Analyze Failures
const failures = abTestResults.optimized.filter(r => !r.meetsSuccessCriteria);
const failureAnalysis = failures.map(failure => {
const testCase = testCases.find(tc => tc.id === failure.testId);
return {
testId: failure.testId,
testType: testCase.type,
expectedOutput: testCase.expectedOutput,
actualOutput: failure.output,
gap: analyzeGap(testCase.expectedOutput, failure.output),
rootCause: identifyRootCause(failure, optimizedPrompt),
recommendedFix: suggestFix(rootCause)
};
});
await memory.store('prompt-architect/failure-analysis', failureAnalysis);
Step 5.2: Apply Refinements
let refinedPrompt = optimizedPrompt;
for (const analysis of failureAnalysis) {
switch (analysis.rootCause.type) {
case 'MISSING_CONSTRAINT':
refinedPrompt = addConstraint(refinedPrompt, analysis.recommendedFix.constraint);
break;
case 'AMBIGUOUS_INSTRUCTION':
refinedPrompt = clarifyInstruction(refinedPrompt, analysis.recommendedFix.clarification);
break;
case 'INSUFFICIENT_EXAMPLES':
refinedPrompt = addExample(refinedPrompt, analysis.recommendedFix.example);
break;
case 'MISSING_EDGE_CASE_HANDLING':
refinedPrompt = addEdgeCaseGuidance(refinedPrompt, analysis.recommendedFix.guidance);
break;
}
}
await memory.store('prompt-architect/refined-prompt', refinedPrompt);
Step 5.3: Re-validate
const revalidationResults = await runABTest(optimizedPrompt, refinedPrompt, testCases);
const improvementFromOptimized = {
scoreImprovement: calculateImprovement(
metrics.optimized.avgScore,
calculateAverage(revalidationResults.optimized.map(r => r.score))
),
successRateImprovement: calculateImprovement(
metrics.optimized.successRate,
calculateSuccessRate(revalidationResults.optimized)
)
};
// If refined version is better, adopt it
if (improvementFromOptimized.scoreImprovement > 5) {
console.log('✅ Refinement successful. Adopting refined version.');
finalPrompt = refinedPrompt;
} else {
console.log('✅ Optimized version is sufficient.');
finalPrompt = optimizedPrompt;
}
await memory.store('prompt-architect/final-prompt', finalPrompt);
Step 5.4: Generate Documentation
# Prompt Optimization Report
## Original Prompt
\`\`\`
${originalPrompt}
\`\`\`
## Final Prompt
\`\`\`
${finalPrompt}
\`\`\`
## Changes Applied
${changesApplied.map(change => `- ${change}`).join('\n')}
## Performance Metrics
| Metric | Original | Optimized | Improvement |
|--------|----------|-----------|-------------|
| Avg Score | ${metrics.original.avgScore} | ${metrics.optimized.avgScore} | ${metrics.improvement.scoreImprovement} |
| Success Rate | ${metrics.original.successRate}% | ${metrics.optimized.successRate}% | ${metrics.improvement.successRateImprovement} |
| Consistency | ${metrics.original.consistency} | ${metrics.optimized.consistency} | ${metrics.improvement.consistencyImprovement} |
## Test Results
${testCases.map(tc => `
### ${tc.id} (${tc.type})
- **Expected**: ${tc.expectedOutput}
- **Original Result**: ${getResult('original', tc.id)}
- **Optimized Result**: ${getResult('optimized', tc.id)}
- **Status**: ${getStatus('optimized', tc.id)}
`).join('\n')}
## Recommendations
${generateRecommendations(finalPrompt)}
Validation Criteria
- Failures analyzed
- Refinements applied
- Re-validation completed
- Documentation generated
Memory Pattern
npx claude-flow@alpha hooks session-end \
--session-id "prompt-architect-${TIMESTAMP}" \
--export-metrics true \
--summary "Prompt optimized with ${IMPROVEMENT}% improvement"
Success Metrics
Quantitative
- Score improvement > 20%
- Success rate > 85%
- Consistency score > 0.8
- All test cases pass
Qualitative
- Clear structure
- No anti-patterns
- Evidence-based techniques applied
- User satisfaction with outputs
Common Patterns
Pattern 1: Role-Based Optimization
You are an expert ${domain} specialist with ${years} years of experience.
Your expertise includes: ${expertise_list}
You approach problems by: ${methodology}
Pattern 2: Constraint-First Design
# Constraints (Read First)
MUST: ${required_constraints}
MUST NOT: ${forbidden_actions}
OPTIMIZE FOR: ${optimization_targets}
# Task
[task description with constraints in mind]
Pattern 3: Format-Driven Output
Your output MUST follow this exact structure:
\`\`\`json
{
"analysis": "...",
"recommendations": [...],
"confidence": 0.XX
}
\`\`\`
Do not deviate from this format.
Integration Examples
With Agent Creation
// Use prompt architect to optimize agent system prompts
const agentPrompt = await optimizePrompt({
role: 'backend-developer',
domain: 'Node.js API development',
constraints: ['RESTful design', 'security-first', 'test-driven'],
outputFormat: 'production-ready code'
});
With SPARC Workflow
# Optimize specification prompts
npx claude-flow@alpha skill-run prompt-architect \
--input "sparc-spec-prompt.md" \
--output "optimized-spec-prompt.md"
# Use optimized prompt in SPARC
npx claude-flow@alpha sparc run spec-pseudocode \
--prompt-file "optimized-spec-prompt.md"
Memory Schema
{
"prompt-architect/": {
"session-${id}/": {
"analysis": {},
"anti-patterns": [],
"missing": [],
"structure": {},
"techniques-applied": [],
"test-cases": [],
"ab-test-results": {},
"metrics": {},
"failure-analysis": [],
"refined-prompt": "",
"final-prompt": ""
}
}
}
Skill Completion
Outputs:
- final-prompt.md: Optimized prompt ready for use
- optimization-report.md: Detailed analysis and results
- ab-test-results.json: Performance comparison data
- prompt-library-entry.md: Cataloged for reuse
Skill complete when metrics show >20% improvement and all test cases pass.
Quick Install
/plugin add https://github.com/DNYoussef/ai-chrome-extension/tree/main/when-optimizing-prompts-use-prompt-architectCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
deepspeed
DesignThis skill provides expert guidance for distributed training using Microsoft's DeepSpeed library. It helps developers implement optimization techniques like ZeRO stages, pipeline parallelism, and mixed-precision training. Use this skill when working with DeepSpeed features, debugging code, or learning best practices for large-scale model training.
llama-factory
DesignThis skill provides expert guidance for fine-tuning LLMs using LLaMA-Factory, a framework featuring a no-code WebUI and support for 100+ models. It offers comprehensive assistance for implementing solutions, debugging code, and learning best practices when working with LLaMA-Factory's capabilities like multi-bit QLoRA and multimodal support. Use this skill when developing, debugging, or asking about LLaMA-Factory features and APIs.
when-optimizing-agent-learning-use-reasoningbank-intelligence
OtherThis skill implements adaptive learning for AI agents using ReasoningBank to recognize patterns, optimize strategies, and enable continuous performance improvement. Use it when you need to enhance agent capabilities for repetitive tasks or strategy refinement. It outputs trained models, pattern libraries, and optimization recommendations with performance benchmarks.
performance-analysis
OtherThis skill provides comprehensive performance analysis for Claude Flow swarms, detecting bottlenecks and profiling operations. It generates detailed reports and offers AI-powered optimization recommendations to improve swarm performance. Use it when you need to monitor, analyze, and optimize the efficiency of your Claude Flow implementations.
