cloud-migration-planning
About
This skill helps developers plan and execute cloud migrations by providing strategies for assessment, database migration, application refactoring, and cutover. It supports major cloud providers like AWS, Azure, and GCP and is ideal for moving from on-premises, modernizing legacy systems, or consolidating platforms. Use it to implement lift-and-shift, replatforming, or refactoring approaches for a smooth transition.
Documentation
Cloud Migration Planning
Overview
Cloud migration planning involves assessing current infrastructure, designing migration strategies, executing migrations with minimal downtime, and validating outcomes. Support lift-and-shift, replatforming, and refactoring approaches for smooth cloud adoption.
When to Use
- Moving from on-premises to cloud
- Cloud platform consolidation
- Legacy system modernization
- Reducing data center costs
- Improving scalability and availability
- Meeting compliance requirements
- Disaster recovery enhancement
- Technology refresh initiatives
Implementation Examples
1. Migration Assessment and Planning
# Cloud migration assessment tool
from enum import Enum
from typing import Dict, List, Tuple
from dataclasses import dataclass
class MigrationStrategy(Enum):
LIFT_AND_SHIFT = "lift_and_shift" # Rehost
REPLATFORM = "replatform" # Rehost with optimizations
REFACTOR = "refactor" # Rebuild for cloud
REPURCHASE = "repurchase" # Switch to SaaS
RETIRE = "retire" # Decommission
class ApplicationComplexity(Enum):
LOW = 1
MEDIUM = 2
HIGH = 3
@dataclass
class ApplicationAssessment:
name: str
complexity: ApplicationComplexity
dependencies: List[str]
estimated_effort: int # days
business_criticality: int # 1-10
current_costs: float # annual
cloud_costs_estimate: float # annual
class CloudMigrationPlanner:
def __init__(self):
self.applications: List[ApplicationAssessment] = []
self.total_effort = 0
self.total_cost_savings = 0
def add_application(self, app: ApplicationAssessment):
"""Add application to migration assessment"""
self.applications.append(app)
def recommend_migration_strategy(self, app: ApplicationAssessment) -> MigrationStrategy:
"""Recommend migration strategy based on application characteristics"""
if app.complexity == ApplicationComplexity.LOW:
return MigrationStrategy.LIFT_AND_SHIFT
elif app.complexity == ApplicationComplexity.MEDIUM:
# Check if cost savings justify refactoring
annual_savings = app.current_costs - app.cloud_costs_estimate
refactor_cost = app.estimated_effort * 500 # cost per day
payback_months = (refactor_cost / annual_savings) * 12 if annual_savings > 0 else float('inf')
if payback_months < 6:
return MigrationStrategy.REFACTOR
else:
return MigrationStrategy.REPLATFORM
else: # HIGH complexity
# Evaluate if modernization is worthwhile
if app.business_criticality >= 8:
return MigrationStrategy.REFACTOR
else:
return MigrationStrategy.RETIRE # Consider retiring
def create_migration_wave_plan(self) -> Dict:
"""Create phased migration plan"""
# Sort by criticality and dependencies
sorted_apps = sorted(
self.applications,
key=lambda x: (len(x.dependencies), -x.business_criticality)
)
waves = {
'wave_1': [], # Low-risk, few dependencies
'wave_2': [], # Medium-risk
'wave_3': [] # High-risk or critical
}
migrated = set()
for app in sorted_apps:
# Check if dependencies are satisfied
deps_satisfied = all(dep in migrated for dep in app.dependencies)
if not deps_satisfied:
continue
if app.complexity == ApplicationComplexity.LOW:
waves['wave_1'].append(app.name)
elif app.complexity == ApplicationComplexity.MEDIUM:
waves['wave_2'].append(app.name)
else:
waves['wave_3'].append(app.name)
migrated.add(app.name)
return {
'waves': waves,
'total_applications': len(self.applications),
'migrated_count': len(migrated),
'total_effort_days': sum(app.estimated_effort for app in self.applications)
}
def calculate_roi(self) -> Dict:
"""Calculate migration ROI"""
total_current_costs = sum(app.current_costs for app in self.applications)
total_cloud_costs = sum(app.cloud_costs_estimate for app in self.applications)
annual_savings = total_current_costs - total_cloud_costs
# Estimate migration costs
total_effort = sum(app.estimated_effort for app in self.applications)
migration_cost = total_effort * 250 # cost per day
payback_months = (migration_cost / annual_savings) * 12 if annual_savings > 0 else float('inf')
return {
'total_current_costs': total_current_costs,
'total_cloud_costs': total_cloud_costs,
'annual_savings': annual_savings,
'migration_cost': migration_cost,
'payback_months': payback_months,
'year1_savings': annual_savings - migration_cost,
'year3_savings': (annual_savings * 3) - migration_cost
}
# Usage
planner = CloudMigrationPlanner()
app1 = ApplicationAssessment(
name="Web Frontend",
complexity=ApplicationComplexity.LOW,
dependencies=[],
estimated_effort=5,
business_criticality=7,
current_costs=50000,
cloud_costs_estimate=30000
)
app2 = ApplicationAssessment(
name="API Backend",
complexity=ApplicationComplexity.MEDIUM,
dependencies=["Database"],
estimated_effort=20,
business_criticality=9,
current_costs=80000,
cloud_costs_estimate=40000
)
app3 = ApplicationAssessment(
name="Database",
complexity=ApplicationComplexity.HIGH,
dependencies=[],
estimated_effort=30,
business_criticality=10,
current_costs=120000,
cloud_costs_estimate=80000
)
planner.add_application(app1)
planner.add_application(app2)
planner.add_application(app3)
print("Migration Wave Plan:")
print(planner.create_migration_wave_plan())
print("\nROI Analysis:")
print(planner.calculate_roi())
2. Database Migration Strategies
# AWS Database Migration Service (DMS)
aws dms create-replication-instance \
--replication-instance-identifier my-replication-instance \
--replication-instance-class dms.t3.large \
--allocated-storage 100 \
--vpc-security-group-ids sg-12345
# Create source endpoint
aws dms create-endpoint \
--endpoint-identifier source-db \
--endpoint-type source \
--engine-name postgres \
--server-name source-db.example.com \
--port 5432 \
--username sourceadmin \
--password sourcepassword \
--database-name sourcedb
# Create target endpoint
aws dms create-endpoint \
--endpoint-identifier target-rds \
--endpoint-type target \
--engine-name postgres \
--server-name my-db.xyz.us-east-1.rds.amazonaws.com \
--port 5432 \
--username targetadmin \
--password targetpassword \
--database-name targetdb
# Create migration task
aws dms create-replication-task \
--replication-task-identifier postgres-migration \
--source-endpoint-arn arn:aws:dms:region:account:endpoint/source-db \
--target-endpoint-arn arn:aws:dms:region:account:endpoint/target-rds \
--replication-instance-arn arn:aws:dms:region:account:rep:my-replication-instance \
--migration-type fullload \
--table-mappings file://mappings.json
# Monitor migration
aws dms describe-replication-tasks \
--filters Name=replication-task-arn,Values=arn:aws:dms:region:account:task:task-id
# Start migration
aws dms start-replication-task \
--replication-task-arn arn:aws:dms:region:account:task:postgres-migration \
--start-replication-task-type start-replication
3. Terraform Migration Infrastructure
# migration.tf
terraform {
required_providers {
aws = {
source = "hashicorp/aws"
version = "~> 5.0"
}
}
}
provider "aws" {
region = var.aws_region
}
# VPC for migration infrastructure
resource "aws_vpc" "migration" {
cidr_block = "10.100.0.0/16"
enable_dns_hostnames = true
tags = { Name = "migration-vpc" }
}
# Subnets for DMS
resource "aws_subnet" "migration" {
count = 2
vpc_id = aws_vpc.migration.id
cidr_block = "10.100.${count.index}.0/24"
availability_zone = data.aws_availability_zones.available.names[count.index]
tags = { Name = "migration-subnet-${count.index}" }
}
# Replication subnet group
resource "aws_dms_replication_subnet_group" "migration" {
replication_subnet_group_description = "Migration subnet group"
replication_subnet_group_id = "migration-subnet-group"
subnet_ids = aws_subnet.migration[*].id
}
# Replication instance
resource "aws_dms_replication_instance" "migration" {
allocated_storage = 100
apply_immediately = true
auto_minor_version_upgrade = true
engine_version = "3.4.5"
multi_az = true
publicly_accessible = false
replication_instance_class = "dms.c5.2xlarge"
replication_instance_id = "migration-instance"
replication_subnet_group_id = aws_dms_replication_subnet_group.migration.id
tags = { Name = "migration-instance" }
}
# Source database endpoint
resource "aws_dms_endpoint" "source" {
endpoint_type = "source"
engine_name = "postgres"
server_name = var.source_db_host
port = 5432
username = var.source_db_user
password = var.source_db_password
database_name = var.source_db_name
endpoint_id = "source-postgres"
ssl_mode = "require"
tags = { Name = "source-endpoint" }
}
# Target RDS endpoint
resource "aws_dms_endpoint" "target" {
endpoint_type = "target"
engine_name = "postgres"
server_name = aws_db_instance.target.endpoint
port = 5432
username = aws_db_instance.target.username
password = var.target_db_password
database_name = aws_db_instance.target.db_name
endpoint_id = "target-rds"
tags = { Name = "target-endpoint" }
}
# Target RDS instance
resource "aws_db_instance" "target" {
identifier = "migration-target-db"
allocated_storage = 100
engine = "postgres"
engine_version = "15.2"
instance_class = "db.r5.2xlarge"
username = "postgres"
password = random_password.db.result
db_name = "targetdb"
multi_az = true
publicly_accessible = false
backup_retention_period = 30
backup_window = "03:00-04:00"
skip_final_snapshot = false
final_snapshot_identifier = "migration-target-final-snapshot"
}
# Replication task
resource "aws_dms_replication_task" "migration" {
migration_type = "full-load-and-cdc"
replication_instance_arn = aws_dms_replication_instance.migration.replication_instance_arn
replication_task_id = "postgres-full-migration"
source_endpoint_arn = aws_dms_endpoint.source.endpoint_arn
target_endpoint_arn = aws_dms_endpoint.target.endpoint_arn
table_mappings = jsonencode({
rules = [
{
rule_type = "selection"
rule_id = "1"
rule_action = "include"
object_locator = {
schema_name = "%"
table_name = "%"
}
}
]
})
replication_task_settings = jsonencode({
TargetMetadata = {
TargetSchema = "public"
SupportLobs = true
FullLobMode = false
LobChunkSize = 64
LobMaxSize = 32
}
FullLoadSettings = {
TargetPrepMode = "DROP_AND_CREATE"
CreatePkAfterFullLoad = false
StopTaskCachedSourceNotApplied = false
}
Logging = {
EnableLogging = true
LogComponents = [
{
LogType = "SOURCE_UNSPECIFIED"
Id = "%COMMON_MESSAGES%"
Severity = "LOGGER_SEVERITY_DEBUG"
}
]
}
})
tags = { Name = "postgres-migration" }
depends_on = [
aws_dms_endpoint.source,
aws_dms_endpoint.target,
aws_dms_replication_instance.migration
]
}
# Secrets Manager for credentials
resource "aws_secretsmanager_secret" "migration_creds" {
name_prefix = "migration/"
}
resource "aws_secretsmanager_secret_version" "migration_creds" {
secret_id = aws_secretsmanager_secret.migration_creds.id
secret_string = jsonencode({
source_db_password = var.source_db_password
target_db_password = var.target_db_password
})
}
# CloudWatch monitoring
resource "aws_cloudwatch_log_group" "dms" {
name = "/aws/dms/migration"
retention_in_days = 7
}
resource "aws_cloudwatch_metric_alarm" "migration_failed" {
alarm_name = "dms-migration-failed"
comparison_operator = "GreaterThanOrEqualToThreshold"
evaluation_periods = 1
metric_name = "FailureCount"
namespace = "AWS/DMS"
period = 300
statistic = "Sum"
threshold = 1
alarm_description = "Alert on DMS migration failure"
}
# Random password
resource "random_password" "db" {
length = 16
special = true
}
# Data source for AZs
data "aws_availability_zones" "available" {
state = "available"
}
# Outputs
output "dms_instance_id" {
value = aws_dms_replication_instance.migration.replication_instance_id
}
output "target_db_endpoint" {
value = aws_db_instance.target.endpoint
}
4. Cutover Validation Checklist
# cutover-validation.yaml
pre_cutover:
- name: "Source Database Health Check"
steps:
- command: "SELECT COUNT(*) FROM pg_stat_replication;"
- validate: "Replication lag < 1 second"
- expected: "All replicas in sync"
- name: "Target Database Readiness"
steps:
- command: "SELECT datname, pg_size_pretty(pg_database_size(datname)) FROM pg_database;"
- validate: "Target DB size matches source"
- expected: "Exact match"
- name: "Network Connectivity"
steps:
- test: "Source to Target connectivity"
- command: "nc -zv target-db.rds.amazonaws.com 5432"
- expected: "Connection successful"
- name: "Backup Validation"
steps:
- verify: "Recent backup exists"
- test: "Restore to test instance"
- expected: "Restore successful"
cutover:
- name: "Pre-Cutover Tasks"
steps:
- "Notify stakeholders"
- "Stop application writes"
- "Verify replication lag < 1 second"
- "Capture final metrics from source"
- name: "DNS Cutover"
steps:
- "Update DNS to point to target"
- "Verify DNS propagation"
- "Test connectivity from test client"
- name: "Application Failover"
steps:
- "Update connection strings"
- "Restart application servers"
- "Verify application health"
- "Run smoke tests"
post_cutover:
- name: "Validation"
steps:
- "Run test suite on production"
- "Verify data integrity"
- "Check application logs"
- "Monitor error rates"
- name: "Cleanup"
steps:
- "Document final metrics"
- "Archive source database"
- "Update documentation"
- "Schedule post-migration review"
validation_criteria:
- "Zero data loss"
- "Application response time < 200ms"
- "Error rate < 0.1%"
- "All user journeys pass"
- "Database replication successful"
Best Practices
✅ DO
- Perform thorough discovery and assessment
- Run parallel systems during transition
- Test thoroughly before cutover
- Have rollback plan ready
- Monitor closely post-migration
- Document all changes
- Train operations team
- Maintain previous systems temporarily
❌ DON'T
- Rush migration without planning
- Migrate without testing
- Forget rollback procedures
- Ignore dependencies
- Skip stakeholder communication
- Migrate everything at once
- Forget to update documentation
Migration Phases
- Assessment (2-4 weeks): Discover, evaluate, plan
- Pilot (2-8 weeks): Migrate non-critical application
- Wave Migration (8-16 weeks): Migrate by priority
- Optimization (4+ weeks): Fine-tune cloud resources
- Closure (1-2 weeks): Decommission source systems
Resources
Quick Install
/plugin add https://github.com/aj-geddes/useful-ai-prompts/tree/main/cloud-migration-planningCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
llamaindex
MetaLlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.
csv-data-summarizer
MetaThis skill automatically analyzes CSV files to generate comprehensive statistical summaries and visualizations using Python's pandas and matplotlib/seaborn. It should be triggered whenever a user uploads or references CSV data without prompting for analysis preferences. The tool provides immediate insights into data structure, quality, and patterns through automated analysis and visualization.
hybrid-cloud-networking
MetaThis skill configures secure hybrid cloud networking between on-premises infrastructure and cloud platforms like AWS, Azure, and GCP. Use it when connecting data centers to the cloud, building hybrid architectures, or implementing secure cross-premises connectivity. It supports key capabilities such as VPNs and dedicated connections like AWS Direct Connect for high-performance, reliable setups.
Excel Analysis
MetaThis skill enables developers to analyze Excel files and perform data operations using pandas. It can read spreadsheets, create pivot tables, generate charts, and conduct data analysis on .xlsx files and tabular data. Use it when working with Excel files, spreadsheets, or any structured tabular data within Claude Code.
