Correlation Analysis
About
This skill analyzes relationships between variables using correlation coefficients, matrices, and association tests. It supports multiple correlation types including Pearson, Spearman, and Cramér's V for different data types. Developers can use it to measure feature relationships, detect multicollinearity, and identify non-linear dependencies in their data.
Documentation
Correlation Analysis
Correlation analysis measures the strength and direction of relationships between variables, helping identify which features are related and detect multicollinearity.
Correlation Types
- Pearson: Linear correlation (continuous variables)
- Spearman: Rank-based correlation (ordinal/non-linear)
- Kendall: Rank correlation (robust alternative)
- Cramér's V: Association for categorical variables
- Mutual Information: Non-linear dependencies
Key Concepts
- Correlation Coefficient: Ranges from -1 to +1
- Positive Correlation: Variables move together
- Negative Correlation: Variables move oppositely
- Multicollinearity: High correlations between predictors
Implementation with Python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import pearsonr, spearmanr, kendalltau
# Sample data
np.random.seed(42)
n = 200
age = np.random.uniform(20, 70, n)
income = age * 2000 + np.random.normal(0, 10000, n)
education_years = age / 2 + np.random.normal(0, 3, n)
satisfaction = income / 50000 + np.random.normal(0, 0.5, n)
df = pd.DataFrame({
'age': age,
'income': income,
'education_years': education_years,
'satisfaction': satisfaction,
'years_employed': age - education_years - 6
})
# Pearson correlation (linear)
corr_matrix = df.corr(method='pearson')
print("Pearson Correlation Matrix:")
print(corr_matrix)
# Individual correlation with p-value
corr_coef, p_value = pearsonr(df['age'], df['income'])
print(f"\nPearson correlation (age vs income): r={corr_coef:.4f}, p-value={p_value:.4f}")
# Spearman correlation (rank-based)
spearman_matrix = df.corr(method='spearman')
print("\nSpearman Correlation Matrix:")
print(spearman_matrix)
spearman_coef, p_value = spearmanr(df['age'], df['income'])
print(f"Spearman correlation (age vs income): rho={spearman_coef:.4f}, p-value={p_value:.4f}")
# Kendall tau correlation
kendall_coef, p_value = kendalltau(df['age'], df['income'])
print(f"Kendall correlation (age vs income): tau={kendall_coef:.4f}, p-value={p_value:.4f}")
# Correlation heatmap
fig, axes = plt.subplots(1, 2, figsize=(14, 5))
# Pearson heatmap
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0,
square=True, ax=axes[0], vmin=-1, vmax=1)
axes[0].set_title('Pearson Correlation Heatmap')
# Spearman heatmap
sns.heatmap(spearman_matrix, annot=True, cmap='coolwarm', center=0,
square=True, ax=axes[1], vmin=-1, vmax=1)
axes[1].set_title('Spearman Correlation Heatmap')
plt.tight_layout()
plt.show()
# Correlation with significance testing
def correlation_with_pvalue(df):
rows, cols = [], []
for col1 in df.columns:
for col2 in df.columns:
if col1 < col2: # Avoid duplicates
r, p = pearsonr(df[col1], df[col2])
rows.append({
'Variable 1': col1,
'Variable 2': col2,
'Correlation': r,
'P-value': p,
'Significant': 'Yes' if p < 0.05 else 'No'
})
return pd.DataFrame(rows)
corr_table = correlation_with_pvalue(df)
print("\nCorrelation with P-values:")
print(corr_table)
# Scatter plots with regression lines
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
pairs = [('age', 'income'), ('age', 'education_years'),
('income', 'satisfaction'), ('education_years', 'years_employed')]
for idx, (var1, var2) in enumerate(pairs):
ax = axes[idx // 2, idx % 2]
ax.scatter(df[var1], df[var2], alpha=0.5)
# Add regression line
z = np.polyfit(df[var1], df[var2], 1)
p = np.poly1d(z)
x_line = np.linspace(df[var1].min(), df[var1].max(), 100)
ax.plot(x_line, p(x_line), "r--", linewidth=2)
r, p_val = pearsonr(df[var1], df[var2])
ax.set_title(f'{var1} vs {var2}\nr={r:.4f}, p={p_val:.4f}')
ax.set_xlabel(var1)
ax.set_ylabel(var2)
ax.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
# Multicollinearity detection (VIF)
from statsmodels.stats.outliers_influence import variance_inflation_factor
X = df[['age', 'education_years', 'years_employed']]
vif_data = pd.DataFrame()
vif_data['Variable'] = X.columns
vif_data['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
print("\nVariance Inflation Factor (VIF):")
print(vif_data)
print("\nVIF > 10: High multicollinearity")
print("VIF > 5: Moderate multicollinearity")
# Partial correlation (controlling for confounding)
def partial_correlation(df, x, y, control_vars):
from scipy.stats import linregress
# Residuals of x after removing control variables
x_residuals = df[x] - np.poly1d(
np.polyfit(df[control_vars].values, df[x], deg=1)
)(df[control_vars].values)
# Residuals of y after removing control variables
y_residuals = df[y] - np.poly1d(
np.polyfit(df[control_vars].values, df[y], deg=1)
)(df[control_vars].values)
return pearsonr(x_residuals, y_residuals)[0]
partial_corr = partial_correlation(df, 'income', 'satisfaction', ['age'])
print(f"\nPartial correlation (income vs satisfaction, controlling for age): {partial_corr:.4f}")
# Distance correlation (non-linear relationships)
try:
from dcor import distance_correlation
dist_corr = distance_correlation(df['age'], df['income'])
print(f"Distance correlation (age vs income): {dist_corr:.4f}")
except ImportError:
print("dcor library not installed for distance correlation")
# Correlation stability over time
fig, ax = plt.subplots(figsize=(12, 5))
rolling_corr = df['age'].rolling(window=50).corr(df['income'])
ax.plot(rolling_corr.index, rolling_corr.values)
ax.set_title('Rolling Correlation (age vs income, window=50)')
ax.set_ylabel('Correlation Coefficient')
ax.grid(True, alpha=0.3)
plt.show()
Interpretation Guidelines
- |r| = 0.0-0.3: Weak correlation
- |r| = 0.3-0.7: Moderate correlation
- |r| = 0.7-1.0: Strong correlation
- p < 0.05: Statistically significant
- High VIF (>10): Multicollinearity problem
Important Notes
- Correlation ≠ Causation
- Non-linear relationships missed by Pearson
- Outliers can distort correlations
- Sample size affects significance
- Temporal trends can create spurious correlations
Visualization Strategies
- Heatmaps for overview
- Scatter plots for relationships
- Pair plots for multivariate analysis
- Rolling correlations for time-varying relationships
Deliverables
- Correlation matrices (Pearson, Spearman)
- Correlation heatmaps with annotations
- Statistical significance table
- Scatter plots with regression lines
- Multicollinearity assessment (VIF)
- Partial correlation analysis
- Relationship interpretation report
Quick Install
/plugin add https://github.com/aj-geddes/useful-ai-prompts/tree/main/correlation-analysisCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
webapp-testing
TestingThis Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.
finishing-a-development-branch
TestingThis skill helps developers complete finished work by verifying tests pass and then presenting structured integration options. It guides the workflow for merging, creating PRs, or cleaning up branches after implementation is done. Use it when your code is ready and tested to systematically finalize the development process.
go-test
MetaThe go-test skill provides expertise in Go's standard testing package and best practices. It helps developers implement table-driven tests, subtests, benchmarks, and coverage strategies while following Go conventions. Use it when writing test files, creating mocks, detecting race conditions, or organizing integration tests in Go projects.
