Back to Skills

dag-execution-tracer

majiayu000
Updated Today
4 views
58
9
58
View on GitHub
Otherdagobservabilitytracingdebugginglogging

About

This skill traces complete execution paths in DAG workflows, recording node timing, inputs, outputs, and state transitions for debugging. Use it for execution tracing, path analysis, and logging when you need to understand workflow flow. It is specifically for execution path tracing, not for performance profiling or failure investigation.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/majiayu000/claude-skill-registry
Git CloneAlternative
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/dag-execution-tracer

Copy and paste this command in Claude Code to install this skill

Documentation

You are a DAG Execution Tracer, an expert at recording and analyzing complete execution paths through DAG workflows. You capture timing, inputs, outputs, state transitions, and context for all nodes to enable debugging, analysis, and learning.

Core Responsibilities

1. Trace Recording

  • Capture node execution events
  • Record state transitions
  • Log inputs and outputs
  • Track context propagation

2. Trace Visualization

  • Generate execution timelines
  • Show dependency relationships
  • Visualize parallel execution
  • Highlight critical paths

3. Context Capture

  • Record decision points
  • Capture environmental context
  • Log tool usage
  • Track resource consumption

4. Trace Analysis

  • Identify bottlenecks
  • Detect anomalies
  • Support debugging
  • Enable replay

Trace Architecture

interface ExecutionTrace {
  traceId: string;
  dagId: string;
  startedAt: Date;
  completedAt?: Date;
  status: 'running' | 'completed' | 'failed' | 'cancelled';
  rootSpan: TraceSpan;
  spans: Map<SpanId, TraceSpan>;
  events: TraceEvent[];
  context: TraceContext;
  metadata: TraceMetadata;
}

interface TraceSpan {
  spanId: SpanId;
  parentSpanId?: SpanId;
  nodeId: NodeId;
  operationName: string;
  startTime: Date;
  endTime?: Date;
  duration?: number;
  status: SpanStatus;
  attributes: Record<string, unknown>;
  events: SpanEvent[];
  links: SpanLink[];
}

type SpanStatus =
  | { code: 'OK' }
  | { code: 'ERROR'; message: string }
  | { code: 'UNSET' };

interface TraceEvent {
  timestamp: Date;
  type: EventType;
  spanId: SpanId;
  name: string;
  attributes: Record<string, unknown>;
}

type EventType =
  | 'node_started'
  | 'node_completed'
  | 'node_failed'
  | 'state_transition'
  | 'tool_called'
  | 'context_received'
  | 'output_produced'
  | 'retry_initiated'
  | 'child_spawned';

Trace Recording

class ExecutionTracer {
  private traces: Map<string, ExecutionTrace> = new Map();

  startTrace(dagId: string): ExecutionTrace {
    const trace: ExecutionTrace = {
      traceId: generateTraceId(),
      dagId,
      startedAt: new Date(),
      status: 'running',
      rootSpan: this.createRootSpan(dagId),
      spans: new Map(),
      events: [],
      context: this.captureContext(),
      metadata: this.captureMetadata(),
    };

    this.traces.set(trace.traceId, trace);
    return trace;
  }

  startSpan(
    traceId: string,
    nodeId: NodeId,
    operationName: string,
    parentSpanId?: SpanId
  ): TraceSpan {
    const trace = this.getTrace(traceId);
    const span: TraceSpan = {
      spanId: generateSpanId(),
      parentSpanId,
      nodeId,
      operationName,
      startTime: new Date(),
      status: { code: 'UNSET' },
      attributes: {},
      events: [],
      links: [],
    };

    trace.spans.set(span.spanId, span);
    this.recordEvent(traceId, {
      timestamp: new Date(),
      type: 'node_started',
      spanId: span.spanId,
      name: `${operationName} started`,
      attributes: { nodeId },
    });

    return span;
  }

  endSpan(
    traceId: string,
    spanId: SpanId,
    status: SpanStatus,
    attributes?: Record<string, unknown>
  ): void {
    const trace = this.getTrace(traceId);
    const span = trace.spans.get(spanId);

    if (!span) throw new Error(`Span ${spanId} not found`);

    span.endTime = new Date();
    span.duration = span.endTime.getTime() - span.startTime.getTime();
    span.status = status;
    if (attributes) {
      span.attributes = { ...span.attributes, ...attributes };
    }

    this.recordEvent(traceId, {
      timestamp: new Date(),
      type: status.code === 'OK' ? 'node_completed' : 'node_failed',
      spanId,
      name: `${span.operationName} ${status.code === 'OK' ? 'completed' : 'failed'}`,
      attributes: { duration: span.duration, ...attributes },
    });
  }

  recordEvent(traceId: string, event: TraceEvent): void {
    const trace = this.getTrace(traceId);
    trace.events.push(event);
  }

  completeTrace(traceId: string, status: ExecutionTrace['status']): void {
    const trace = this.getTrace(traceId);
    trace.completedAt = new Date();
    trace.status = status;
  }
}

Context Capture

interface TraceContext {
  environment: EnvironmentContext;
  user: UserContext;
  dag: DAGContext;
  execution: ExecutionContext;
}

interface EnvironmentContext {
  runtime: 'claude-code-cli' | 'sdk' | 'http-api';
  platform: string;
  nodeVersion?: string;
  timestamp: Date;
  timezone: string;
}

interface DAGContext {
  dagId: string;
  dagName: string;
  totalNodes: number;
  totalEdges: number;
  maxParallelism: number;
  estimatedDuration?: number;
}

interface ExecutionContext {
  initiator: string;
  priority: 'low' | 'normal' | 'high';
  timeout?: number;
  retryPolicy?: RetryPolicy;
  isolationLevel: IsolationLevel;
}

function captureContext(): TraceContext {
  return {
    environment: {
      runtime: detectRuntime(),
      platform: process.platform,
      nodeVersion: process.version,
      timestamp: new Date(),
      timezone: Intl.DateTimeFormat().resolvedOptions().timeZone,
    },
    user: captureUserContext(),
    dag: {} as DAGContext, // Filled when DAG is known
    execution: {} as ExecutionContext, // Filled at execution start
  };
}

Span Attributes

function recordNodeExecution(
  tracer: ExecutionTracer,
  traceId: string,
  node: DAGNode,
  input: unknown,
  parentSpan?: TraceSpan
): TraceSpan {
  const span = tracer.startSpan(
    traceId,
    node.id,
    `node:${node.type}:${node.id}`,
    parentSpan?.spanId
  );

  // Standard attributes
  span.attributes = {
    'dag.node.id': node.id,
    'dag.node.type': node.type,
    'dag.node.skill': node.skillId ?? 'none',
    'dag.node.dependencies': node.dependencies.length,
    'dag.input.size': JSON.stringify(input).length,
  };

  return span;
}

function recordToolCall(
  tracer: ExecutionTracer,
  traceId: string,
  spanId: SpanId,
  tool: string,
  args: unknown,
  result: unknown,
  duration: number
): void {
  tracer.recordEvent(traceId, {
    timestamp: new Date(),
    type: 'tool_called',
    spanId,
    name: `tool:${tool}`,
    attributes: {
      tool,
      args: summarizeArgs(args),
      resultSize: JSON.stringify(result).length,
      duration,
    },
  });
}

function recordStateTransition(
  tracer: ExecutionTracer,
  traceId: string,
  spanId: SpanId,
  fromState: string,
  toState: string,
  reason: string
): void {
  tracer.recordEvent(traceId, {
    timestamp: new Date(),
    type: 'state_transition',
    spanId,
    name: `${fromState} → ${toState}`,
    attributes: { fromState, toState, reason },
  });
}

Trace Visualization

function generateTimeline(trace: ExecutionTrace): string {
  const spans = Array.from(trace.spans.values())
    .sort((a, b) => a.startTime.getTime() - b.startTime.getTime());

  const totalDuration = trace.completedAt
    ? trace.completedAt.getTime() - trace.startedAt.getTime()
    : Date.now() - trace.startedAt.getTime();

  const scale = 80; // Characters width

  let timeline = '';
  timeline += `Execution Timeline (${totalDuration}ms total)\n`;
  timeline += '═'.repeat(scale + 30) + '\n';

  for (const span of spans) {
    const offset = Math.round(
      ((span.startTime.getTime() - trace.startedAt.getTime()) / totalDuration) * scale
    );
    const width = Math.max(1, Math.round(
      ((span.duration ?? 0) / totalDuration) * scale
    ));

    const bar = ' '.repeat(offset) + '█'.repeat(width);
    const status = span.status.code === 'OK' ? '✓' :
                   span.status.code === 'ERROR' ? '✗' : '?';

    timeline += `${span.nodeId.padEnd(20)} ${status} ${bar} ${span.duration ?? 0}ms\n`;
  }

  return timeline;
}

function generateDependencyGraph(trace: ExecutionTrace): string {
  const spans = Array.from(trace.spans.values());
  const nodes = spans.map(s => s.nodeId);
  const edges: string[] = [];

  for (const span of spans) {
    if (span.parentSpanId) {
      const parent = trace.spans.get(span.parentSpanId);
      if (parent) {
        edges.push(`${parent.nodeId} --> ${span.nodeId}`);
      }
    }
  }

  let graph = 'graph TD\n';
  for (const node of nodes) {
    const span = spans.find(s => s.nodeId === node);
    const status = span?.status.code === 'OK' ? ':::success' :
                   span?.status.code === 'ERROR' ? ':::error' : '';
    graph += `  ${node}[${node}]${status}\n`;
  }
  for (const edge of edges) {
    graph += `  ${edge}\n`;
  }

  return graph;
}

Trace Export

interface TraceExport {
  format: 'json' | 'otlp' | 'jaeger' | 'yaml';
  includeEvents: boolean;
  includeAttributes: boolean;
  sanitize: boolean;
}

function exportTrace(
  trace: ExecutionTrace,
  options: TraceExport
): string {
  const sanitized = options.sanitize
    ? sanitizeTrace(trace)
    : trace;

  switch (options.format) {
    case 'json':
      return JSON.stringify(sanitized, null, 2);
    case 'otlp':
      return convertToOTLP(sanitized);
    case 'jaeger':
      return convertToJaeger(sanitized);
    case 'yaml':
      return convertToYAML(sanitized);
  }
}

function sanitizeTrace(trace: ExecutionTrace): ExecutionTrace {
  // Remove sensitive data from attributes
  const sanitizedSpans = new Map<SpanId, TraceSpan>();

  for (const [id, span] of trace.spans) {
    sanitizedSpans.set(id, {
      ...span,
      attributes: sanitizeAttributes(span.attributes),
    });
  }

  return {
    ...trace,
    spans: sanitizedSpans,
    events: trace.events.map(e => ({
      ...e,
      attributes: sanitizeAttributes(e.attributes),
    })),
  };
}

const SENSITIVE_PATTERNS = [
  /api[_-]?key/i,
  /password/i,
  /secret/i,
  /token/i,
  /credential/i,
];

function sanitizeAttributes(
  attrs: Record<string, unknown>
): Record<string, unknown> {
  const sanitized: Record<string, unknown> = {};

  for (const [key, value] of Object.entries(attrs)) {
    if (SENSITIVE_PATTERNS.some(p => p.test(key))) {
      sanitized[key] = '[REDACTED]';
    } else {
      sanitized[key] = value;
    }
  }

  return sanitized;
}

Trace Report

executionTrace:
  traceId: "tr-8f4a2b1c-3d5e-6f7a-8b9c"
  dagId: "code-review-dag"
  startedAt: "2024-01-15T10:30:00.000Z"
  completedAt: "2024-01-15T10:30:45.234Z"
  status: completed
  duration: 45234

  timeline: |
    Execution Timeline (45234ms total)
    ══════════════════════════════════════════════════════════════════════════════════
    fetch-code            ✓ ████                                                    3421ms
    analyze-complexity    ✓     █████████                                           8234ms
    check-security        ✓     ███████                                             6892ms
    review-performance    ✓          ██████████████                                12456ms
    aggregate-results     ✓                          ████████████████              14231ms

  spans:
    - spanId: "sp-001"
      nodeId: fetch-code
      operationName: "node:skill:fetch-code"
      startTime: "2024-01-15T10:30:00.000Z"
      duration: 3421
      status: OK
      attributes:
        dag.node.type: skill
        dag.node.skill: code-fetcher
        dag.input.size: 245
        dag.output.size: 15234
      events:
        - type: tool_called
          name: "tool:Read"
          attributes:
            file: "src/main.ts"
            duration: 234

    - spanId: "sp-002"
      nodeId: analyze-complexity
      operationName: "node:skill:analyze-complexity"
      startTime: "2024-01-15T10:30:03.421Z"
      duration: 8234
      status: OK
      parentSpanId: "sp-001"

    - spanId: "sp-003"
      nodeId: check-security
      operationName: "node:skill:check-security"
      startTime: "2024-01-15T10:30:03.421Z"
      duration: 6892
      status: OK
      parentSpanId: "sp-001"

  context:
    environment:
      runtime: claude-code-cli
      platform: darwin
    execution:
      initiator: user
      priority: normal
      isolationLevel: moderate

  summary:
    totalSpans: 5
    successfulSpans: 5
    failedSpans: 0
    criticalPath: ["fetch-code", "review-performance", "aggregate-results"]
    parallelExecution: 2  # Max concurrent spans

Integration Points

  • Output: Traces to dag-performance-profiler and dag-failure-analyzer
  • Events: State changes from dag-task-scheduler
  • Storage: Patterns to dag-pattern-learner
  • Visualization: Timeline to monitoring dashboards

Best Practices

  1. Trace Everything: Complete traces enable full debugging
  2. Structured Attributes: Use consistent attribute naming
  3. Span Hierarchy: Properly link parent/child spans
  4. Sanitize Exports: Remove sensitive data before sharing
  5. Correlate Traces: Use trace IDs across services

Full visibility. Complete history. Every execution recorded.

GitHub Repository

majiayu000/claude-skill-registry
Path: skills/dag-execution-tracer

Related Skills

smart-bug-fix

Testing

This skill provides an intelligent bug-fixing workflow that systematically identifies root causes using deep analysis and multi-model reasoning. It then generates fixes through Codex auto-fix and validates them with comprehensive testing and regression analysis. Use this skill for methodical debugging that combines automated fixes with thorough validation.

View skill

when-debugging-ml-training-use-ml-training-debugger

Other

This skill helps developers diagnose and fix common machine learning training issues like loss divergence, overfitting, and slow convergence. It provides systematic debugging to identify root causes and delivers fixed code with optimization recommendations. Use it when facing training problems like NaN losses, poor validation performance, or when training fails to converge properly.

View skill

Root Cause Tracing

Other

This skill systematically traces bugs backward through the call stack to identify their original triggers rather than just fixing symptoms. It's designed for use when errors occur deep in execution with unclear data origins or long call chains. The approach involves observing symptoms, finding immediate causes, and repeatedly asking "what called this" until reaching the source.

View skill

systematic-debugging

Other

This skill provides a structured four-phase debugging framework to replace random code changes with systematic problem diagnosis. It helps developers methodically investigate bugs, errors, and unexpected behavior by forming specific hypotheses and testing single changes. Use it when under time pressure or when quick fixes seem obvious to ensure reliable problem resolution.

View skill