Recommendation System
About
This Claude Skill enables developers to build both collaborative and content-based recommendation engines for personalization and user engagement. It provides implementations for key approaches like collaborative filtering, content-based methods, and matrix factorization with essential evaluation metrics. Use this skill when you need to create product recommendation systems that predict user preferences and suggest relevant items.
Documentation
Recommendation System
Recommendation systems predict user preferences and suggest relevant items, driving engagement, sales, and user satisfaction.
Approaches
- Collaborative Filtering: Users similar to you liked X
- Content-based: Items similar to what you liked
- Hybrid: Combining multiple approaches
- Matrix Factorization: Latent factor models
- Deep Learning: Neural networks for embeddings
Key Metrics
- Precision@K: % recommendations relevant
- Recall@K: % relevant items found
- NDCG: Ranking quality metric
- Coverage: % items recommended
- Diversity: Variety in recommendations
Implementation with Python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import NMF
import seaborn as sns
# Create sample user-item interaction data
np.random.seed(42)
users = [f'user_{i}' for i in range(100)]
items = [f'item_{i}' for i in range(50)]
# Generate ratings (sparse matrix)
ratings_list = []
for user in users:
n_items_rated = np.random.randint(5, 20)
rated_items = np.random.choice(items, n_items_rated, replace=False)
for item in rated_items:
rating = np.random.randint(1, 6)
ratings_list.append({'user': user, 'item': item, 'rating': rating})
ratings_df = pd.DataFrame(ratings_list)
print("Sample Ratings:")
print(ratings_df.head(10))
# Create user-item matrix
user_item_matrix = ratings_df.pivot_table(
index='user', columns='item', values='rating', fill_value=0
)
print(f"\nUser-Item Matrix Shape: {user_item_matrix.shape}")
print(f"Sparsity: {1 - (user_item_matrix != 0).sum().sum() / (user_item_matrix.shape[0] * user_item_matrix.shape[1]):.2%}")
# 1. User-based Collaborative Filtering
user_similarity = cosine_similarity(user_item_matrix)
user_similarity_df = pd.DataFrame(
user_similarity, index=user_item_matrix.index, columns=user_item_matrix.index
)
print("\n1. User Similarity Matrix (Sample):")
print(user_similarity_df.iloc[:5, :5])
# Get recommendations for a user
def get_user_based_recommendations(user_id, user_sim_matrix, user_item_mat, n=5):
similar_users = user_sim_matrix[user_id].sort_values(ascending=False)[1:11]
recommendations = {}
for item in user_item_mat.columns:
if user_item_mat.loc[user_id, item] == 0: # Not yet rated
score = (similar_users * user_item_mat.loc[similar_users.index, item]).sum()
recommendations[item] = score
top_recs = sorted(recommendations.items(), key=lambda x: x[1], reverse=True)[:n]
return [rec[0] for rec in top_recs]
# Example: Get recommendations for user_0
user_recommendations = get_user_based_recommendations('user_0', user_similarity_df, user_item_matrix)
print(f"\nRecommendations for user_0: {user_recommendations}")
# 2. Item-based Collaborative Filtering
item_similarity = cosine_similarity(user_item_matrix.T)
item_similarity_df = pd.DataFrame(
item_similarity, index=user_item_matrix.columns, columns=user_item_matrix.columns
)
print("\n2. Item Similarity Matrix (Sample):")
print(item_similarity_df.iloc[:5, :5])
# 3. Content-based Filtering
item_features = np.random.rand(len(items), 10) # Simulate item features
item_feature_similarity = cosine_similarity(item_features)
fig, axes = plt.subplots(2, 2, figsize=(14, 10))
# User similarity heatmap
sns.heatmap(user_similarity_df.iloc[:10, :10], annot=True, fmt='.2f', cmap='coolwarm',
ax=axes[0, 0], cbar_kws={'label': 'Similarity'})
axes[0, 0].set_title('User Similarity Matrix (Sample)')
# Item similarity heatmap
sns.heatmap(item_similarity_df.iloc[:10, :10], annot=True, fmt='.2f', cmap='coolwarm',
ax=axes[0, 1], cbar_kws={'label': 'Similarity'})
axes[0, 1].set_title('Item Similarity Matrix (Sample)')
# Rating distribution
axes[1, 0].hist(ratings_df['rating'], bins=5, color='steelblue', edgecolor='black', alpha=0.7)
axes[1, 0].set_xlabel('Rating')
axes[1, 0].set_ylabel('Count')
axes[1, 0].set_title('Rating Distribution')
axes[1, 0].grid(True, alpha=0.3, axis='y')
# Sparsity by user
user_rating_counts = user_item_matrix.astype(bool).sum(axis=1)
axes[1, 1].hist(user_rating_counts, bins=20, color='lightcoral', edgecolor='black', alpha=0.7)
axes[1, 1].set_xlabel('Number of Rated Items')
axes[1, 1].set_ylabel('Number of Users')
axes[1, 1].set_title('User Activity Distribution')
axes[1, 1].grid(True, alpha=0.3, axis='y')
plt.tight_layout()
plt.show()
# 4. Matrix Factorization (NMF)
nmf = NMF(n_components=10, init='random', random_state=42, max_iter=200)
user_latent = nmf.fit_transform(user_item_matrix)
item_latent = nmf.components_.T
print(f"\n4. Matrix Factorization:")
print(f"User latent factors shape: {user_latent.shape}")
print(f"Item latent factors shape: {item_latent.shape}")
# Reconstruct ratings
reconstructed_ratings = user_latent @ item_latent.T
reconstructed_df = pd.DataFrame(
reconstructed_ratings, index=user_item_matrix.index, columns=user_item_matrix.columns
)
# Calculate RMSE
original_ratings = user_item_matrix[user_item_matrix > 0]
predicted_ratings = reconstructed_df[user_item_matrix > 0]
rmse = np.sqrt(np.mean((original_ratings - predicted_ratings) ** 2))
print(f"Reconstruction RMSE: {rmse:.4f}")
# 5. Evaluation Metrics
def precision_at_k(actual, predicted, k=5):
if len(actual) == 0:
return 0
return len(set(actual[:k]) & set(predicted)) / k
def recall_at_k(actual, predicted, k=5):
if len(actual) == 0:
return 0
return len(set(actual[:k]) & set(predicted)) / len(actual)
# Simulate test set
test_user = 'user_0'
actual_items = ratings_df[ratings_df['user'] == test_user]['item'].values
predicted_items = get_user_based_recommendations(test_user, user_similarity_df, user_item_matrix, n=10)
p_at_5 = precision_at_k(predicted_items, actual_items, k=5)
r_at_5 = recall_at_k(predicted_items, actual_items, k=5)
print(f"\n5. Evaluation Metrics:")
print(f"Precision@5: {p_at_5:.2%}")
print(f"Recall@5: {r_at_5:.2%}")
print(f"F1@5: {2 * (p_at_5 * r_at_5) / (p_at_5 + r_at_5):.2%}")
# 6. Coverage and Diversity
recommended_items = set()
for user in user_item_matrix.index[:20]:
recs = get_user_based_recommendations(user, user_similarity_df, user_item_matrix, n=5)
recommended_items.update(recs)
coverage = len(recommended_items) / len(items)
print(f"\nCoverage: {coverage:.2%}")
# 7. Popularity Analysis
item_popularity = ratings_df['item'].value_counts()
fig, axes = plt.subplots(1, 2, figsize=(14, 5))
# Top items
axes[0].barh(item_popularity.head(10).index, item_popularity.head(10).values,
color='steelblue', edgecolor='black', alpha=0.7)
axes[0].set_xlabel('Number of Ratings')
axes[0].set_title('Top 10 Most Popular Items')
axes[0].grid(True, alpha=0.3, axis='x')
# Popularity distribution
axes[1].hist(item_popularity, bins=20, color='lightcoral', edgecolor='black', alpha=0.7)
axes[1].set_xlabel('Number of Ratings')
axes[1].set_ylabel('Number of Items')
axes[1].set_title('Item Popularity Distribution')
axes[1].grid(True, alpha=0.3, axis='y')
plt.tight_layout()
plt.show()
# 8. Cold Start Problem Analysis
new_user = 'new_user'
new_user_ratings = pd.DataFrame({
'user': [new_user] * 2,
'item': ['item_0', 'item_1'],
'rating': [5, 4]
})
print(f"\n8. Cold Start Problem:")
print(f"New user has rated: {len(new_user_ratings)} items")
print(f"Recommendation challenge: Limited user history")
# 9. Recommendation accuracy over time
k_values = [1, 3, 5, 10]
metrics_over_k = []
for k in k_values:
precision_scores = []
for user in user_item_matrix.index[:10]:
recs = get_user_based_recommendations(user, user_similarity_df, user_item_matrix, n=k)
actual = ratings_df[ratings_df['user'] == user]['item'].values
precision_scores.append(precision_at_k(recs, actual, k=k))
metrics_over_k.append({
'K': k,
'Precision': np.mean(precision_scores),
'Recall': np.mean([recall_at_k(get_user_based_recommendations(user, user_similarity_df, user_item_matrix, n=k),
ratings_df[ratings_df['user'] == user]['item'].values, k=k)
for user in user_item_matrix.index[:10]])
})
metrics_df = pd.DataFrame(metrics_over_k)
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(metrics_df['K'], metrics_df['Precision'], marker='o', linewidth=2, label='Precision', markersize=8)
ax.plot(metrics_df['K'], metrics_df['Recall'], marker='s', linewidth=2, label='Recall', markersize=8)
ax.set_xlabel('K (Number of Recommendations)')
ax.set_ylabel('Score')
ax.set_title('Precision and Recall vs K')
ax.legend()
ax.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
# 10. A/B Test Results (Simulated)
print("\n10. A/B Test Results (Simulated):")
print("Control (No recommendations): 5.2% Conversion Rate")
print("Treatment (Recommendations): 7.8% Conversion Rate")
print("Lift: 50% (Statistically Significant, p < 0.05)")
print("\nRecommendation system complete!")
Algorithm Comparison
- Collaborative Filtering: Simple, no content needed
- Content-based: Works with cold starts
- Matrix Factorization: Scalable, finds latent patterns
- Deep Learning: Complex patterns, requires data
- Hybrid: Combines strengths of multiple approaches
Implementation Considerations
- Handling cold start (new users/items)
- Computational efficiency at scale
- Addressing sparsity (most items not rated)
- Diversity vs relevance trade-off
- Real-time vs batch recommendations
Deliverables
- User-item interaction matrix
- Similarity matrices
- Recommendations for sample users
- Evaluation metrics (precision, recall, NDCG)
- Coverage and diversity analysis
- Visualization of results
- Production implementation code
Quick Install
/plugin add https://github.com/aj-geddes/useful-ai-prompts/tree/main/recommendation-systemCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
Algorithmic Art Generation
MetaThis skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.
webapp-testing
TestingThis Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.
requesting-code-review
DesignThis skill dispatches a code-reviewer subagent to analyze code changes against requirements before proceeding. It should be used after completing tasks, implementing major features, or before merging to main. The review helps catch issues early by comparing the current implementation with the original plan.
