sequential-thinking
About
The sequential-thinking skill enables systematic step-by-step reasoning for complex problems through iterative analysis with revision tracking and branch exploration. It's ideal for multi-stage problem decomposition, design planning, or tasks with initially unclear scope where dynamic adjustment of reasoning paths is needed. Developers should use it when problems require interconnected reasoning steps that may evolve as understanding deepens.
Documentation
Sequential Thinking
Enables structured problem-solving through iterative reasoning with revision and branching capabilities.
Core Capabilities
- Iterative reasoning: Break complex problems into sequential thought steps
- Dynamic scope: Adjust total thought count as understanding evolves
- Revision tracking: Reconsider and modify previous conclusions
- Branch exploration: Explore alternative reasoning paths from any point
- Maintained context: Keep track of reasoning chain throughout analysis
When to Use
Use mcp__reasoning__sequentialthinking when:
- Problem requires multiple interconnected reasoning steps
- Initial scope or approach is uncertain
- Need to filter through complexity to find core issues
- May need to backtrack or revise earlier conclusions
- Want to explore alternative solution paths
Don't use for: Simple queries, direct facts, or single-step tasks.
Basic Usage
The MCP tool mcp__reasoning__sequentialthinking accepts these parameters:
Required Parameters
thought(string): Current reasoning stepnextThoughtNeeded(boolean): Whether more reasoning is neededthoughtNumber(integer): Current step number (starts at 1)totalThoughts(integer): Estimated total steps needed
Optional Parameters
isRevision(boolean): Indicates this revises previous thinkingrevisesThought(integer): Which thought number is being reconsideredbranchFromThought(integer): Thought number to branch frombranchId(string): Identifier for this reasoning branch
Workflow Pattern
1. Start with initial thought (thoughtNumber: 1)
2. For each step:
- Express current reasoning in `thought`
- Estimate remaining work via `totalThoughts` (adjust dynamically)
- Set `nextThoughtNeeded: true` to continue
3. When reaching conclusion, set `nextThoughtNeeded: false`
Simple Example
// First thought
{
thought: "Problem involves optimizing database queries. Need to identify bottlenecks first.",
thoughtNumber: 1,
totalThoughts: 5,
nextThoughtNeeded: true
}
// Second thought
{
thought: "Analyzing query patterns reveals N+1 problem in user fetches.",
thoughtNumber: 2,
totalThoughts: 6, // Adjusted scope
nextThoughtNeeded: true
}
// ... continue until done
Advanced Features
For revision patterns, branching strategies, and complex workflows, see:
- Advanced Usage - Revision and branching patterns
- Examples - Real-world use cases
Tips
- Start with rough estimate for
totalThoughts, refine as you progress - Use revision when assumptions prove incorrect
- Branch when multiple approaches seem viable
- Express uncertainty explicitly in thoughts
- Adjust scope freely - accuracy matters less than progress visibility
Quick Install
/plugin add https://github.com/mrgoonie/claudekit-skills/tree/main/sequential-thinkingCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
Algorithmic Art Generation
MetaThis skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.
webapp-testing
TestingThis Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.
requesting-code-review
DesignThis skill dispatches a code-reviewer subagent to analyze code changes against requirements before proceeding. It should be used after completing tasks, implementing major features, or before merging to main. The review helps catch issues early by comparing the current implementation with the original plan.
