feature-dev-complete
About
This skill orchestrates a complete 12-stage feature development lifecycle using multi-model AI. It handles everything from initial research with Gemini Search to architecture design, Codex prototyping, comprehensive testing, and final documentation. Use this for end-to-end feature development from concept to deployment-ready code.
Documentation
Feature Development Complete
Purpose
Execute complete feature development lifecycle using multi-model AI orchestration.
Specialist Agent
I am a full-stack development coordinator using multi-model orchestration.
Methodology (Complete Lifecycle Pattern):
- Research best practices (Gemini Search)
- Analyze existing patterns (Gemini MegaContext)
- Design architecture (Claude Architect)
- Generate diagrams (Gemini Media)
- Rapid prototype (Codex Auto)
- Comprehensive testing (Codex Iteration)
- Style polish (Claude)
- Documentation (Multi-model)
- Performance optimization
- Security review
- Create PR with comprehensive report
- Deploy readiness check
Models Used:
- Gemini Search: Latest best practices, framework updates
- Gemini MegaContext: Large codebase pattern analysis
- Gemini Media: Architecture diagrams, flow charts
- Claude: Architecture design, testing strategy
- Codex: Rapid prototyping, auto-fixing
- All models: Documentation generation
Input Contract
input:
feature_spec: string (feature description, required)
target_directory: string (default: src/)
create_pr: boolean (default: true)
deploy_after: boolean (default: false)
Output Contract
output:
artifacts:
research: markdown (best practices)
architecture: markdown (design doc)
diagrams: array[image] (visual docs)
implementation: directory (code)
tests: directory (test suite)
documentation: markdown (usage docs)
quality:
test_coverage: number (percentage)
quality_score: number (0-100)
security_issues: number
pr_url: string (if create_pr: true)
deployment_ready: boolean
Execution Flow
#!/bin/bash
set -e
FEATURE_SPEC="$1"
TARGET_DIR="${2:-src/}"
OUTPUT_DIR="feature-$(date +%s)"
mkdir -p "$OUTPUT_DIR"
echo "================================================================"
echo "Complete Feature Development: $FEATURE_SPEC"
echo "================================================================"
# STAGE 1: Research Best Practices
echo "[1/12] Researching latest best practices..."
gemini "Latest 2025 best practices for: $FEATURE_SPEC" \
--grounding google-search \
--output "$OUTPUT_DIR/research.md"
# STAGE 2: Analyze Existing Codebase Patterns
echo "[2/12] Analyzing existing codebase patterns..."
LOC=$(find "$TARGET_DIR" -type f \( -name "*.js" -o -name "*.ts" \) | xargs wc -l | tail -1 | awk '{print $1}' || echo "0")
if [ "$LOC" -gt 5000 ]; then
gemini "Analyze architecture patterns for: $FEATURE_SPEC" \
--files "$TARGET_DIR" \
--model gemini-2.0-flash \
--output "$OUTPUT_DIR/codebase-analysis.md"
else
echo "Small codebase - skipping mega-context analysis"
fi
# STAGE 3: Initialize Development Swarm
echo "[3/12] Initializing development swarm..."
npx claude-flow coordination swarm-init \
--topology hierarchical \
--max-agents 6 \
--strategy balanced
# STAGE 4: Architecture Design
echo "[4/12] Designing architecture..."
# This would invoke SPARC architect in Claude Code
# For now, we document the pattern
cat > "$OUTPUT_DIR/architecture-design.md" <<EOF
# Architecture Design: $FEATURE_SPEC
## Research Findings
$(cat "$OUTPUT_DIR/research.md")
## Existing Patterns
$(cat "$OUTPUT_DIR/codebase-analysis.md" 2>/dev/null || echo "N/A")
## Proposed Architecture
[Generated by Claude Architect Agent]
## Design Decisions
[Key decisions with rationale]
EOF
# STAGE 5: Generate Architecture Diagrams
echo "[5/12] Generating architecture diagrams..."
gemini "Generate system architecture diagram for: $FEATURE_SPEC" \
--type image \
--output "$OUTPUT_DIR/architecture-diagram.png" \
--style technical
gemini "Generate data flow diagram for: $FEATURE_SPEC" \
--type image \
--output "$OUTPUT_DIR/data-flow.png" \
--style diagram
# STAGE 6: Rapid Prototyping
echo "[6/12] Rapid prototyping with Codex..."
codex --full-auto "Implement $FEATURE_SPEC following architecture design" \
--context "$OUTPUT_DIR/architecture-design.md" \
--context "$OUTPUT_DIR/research.md" \
--sandbox true \
--output "$OUTPUT_DIR/implementation/"
# STAGE 7: Theater Detection
echo "[7/12] Detecting placeholder code..."
npx claude-flow theater-detect "$OUTPUT_DIR/implementation/" \
--output "$OUTPUT_DIR/theater-report.json"
THEATER_COUNT=$(cat "$OUTPUT_DIR/theater-report.json" | jq '.issues | length')
if [ "$THEATER_COUNT" -gt 0 ]; then
echo "⚠️ Found $THEATER_COUNT placeholder items - fixing..."
# Auto-complete theater items
codex --full-auto "Complete all TODO and placeholder implementations" \
--context "$OUTPUT_DIR/theater-report.json" \
--context "$OUTPUT_DIR/implementation/" \
--sandbox true
fi
# STAGE 8: Comprehensive Testing with Codex Iteration
echo "[8/12] Testing with Codex auto-fix..."
npx claude-flow functionality-audit "$OUTPUT_DIR/implementation/" \
--model codex-auto \
--max-iterations 5 \
--sandbox true \
--output "$OUTPUT_DIR/test-results.json"
# STAGE 9: Style Audit & Polish
echo "[9/12] Polishing code quality..."
npx claude-flow style-audit "$OUTPUT_DIR/implementation/" \
--fix true \
--output "$OUTPUT_DIR/style-report.json"
# STAGE 10: Security Review
echo "[10/12] Security review..."
npx claude-flow security-scan "$OUTPUT_DIR/implementation/" \
--deep true \
--output "$OUTPUT_DIR/security-report.json"
SECURITY_CRITICAL=$(cat "$OUTPUT_DIR/security-report.json" | jq '.critical_issues')
if [ "$SECURITY_CRITICAL" -gt 0 ]; then
echo "🚨 Critical security issues found!"
cat "$OUTPUT_DIR/security-report.json" | jq '.critical_issues[]'
exit 1
fi
# STAGE 11: Documentation Generation
echo "[11/12] Generating documentation..."
cat > "$OUTPUT_DIR/FEATURE-DOCUMENTATION.md" <<EOF
# Feature Documentation: $FEATURE_SPEC
## Overview
$(cat "$OUTPUT_DIR/research.md" | head -10)
## Architecture

## Implementation
[Code location and structure]
## Usage
[Usage examples]
## Testing
- Test Coverage: $(cat "$OUTPUT_DIR/test-results.json" | jq '.coverage_percent')%
- Tests Passing: $(cat "$OUTPUT_DIR/test-results.json" | jq '.all_passed')
## Quality Metrics
- Quality Score: $(cat "$OUTPUT_DIR/style-report.json" | jq '.quality_score')/100
- Security Issues: 0 critical
---
🤖 Generated with Claude Code Complete Feature Development
EOF
# STAGE 12: Production Readiness Check
echo "[12/12] Final production readiness check..."
TESTS_PASSED=$(cat "$OUTPUT_DIR/test-results.json" | jq '.all_passed')
QUALITY_SCORE=$(cat "$OUTPUT_DIR/style-report.json" | jq '.quality_score')
SECURITY_OK=$([ "$SECURITY_CRITICAL" -eq 0 ] && echo "true" || echo "false")
if [ "$TESTS_PASSED" = "true" ] && [ "$QUALITY_SCORE" -ge 85 ] && [ "$SECURITY_OK" = "true" ]; then
echo "✅ Production ready!"
# Create PR if requested
if [ "${CREATE_PR:-true}" = "true" ]; then
echo "Creating pull request..."
# Copy implementation to target directory
cp -r "$OUTPUT_DIR/implementation/"* "$TARGET_DIR/"
# Git operations
git add .
git commit -m "feat: $FEATURE_SPEC
🤖 Generated with Claude Code Complete Feature Development
## Quality Metrics
- ✅ All tests passing
- ✅ Code quality: $QUALITY_SCORE/100
- ✅ Security: No critical issues
- ✅ Test coverage: $(cat "$OUTPUT_DIR/test-results.json" | jq '.coverage_percent')%
## Documentation
See $OUTPUT_DIR/FEATURE-DOCUMENTATION.md
Co-Authored-By: Claude <[email protected]>"
# Create PR
gh pr create --title "feat: $FEATURE_SPEC" \
--body-file "$OUTPUT_DIR/FEATURE-DOCUMENTATION.md"
fi
else
echo "⚠️ Not production ready - review issues"
exit 1
fi
echo ""
echo "================================================================"
echo "Feature Development Complete!"
echo "================================================================"
echo ""
echo "Artifacts in: $OUTPUT_DIR/"
echo "- Research: research.md"
echo "- Architecture: architecture-design.md"
echo "- Diagrams: *.png"
echo "- Implementation: implementation/"
echo "- Tests: test-results.json"
echo "- Documentation: FEATURE-DOCUMENTATION.md"
echo ""
Integration Points
Cascades
- Standalone complete workflow
- Can be part of
/sprint-automationcascade - Used by
/feature-request-handlercascade
Commands
- Uses:
/gemini-search,/gemini-megacontext,/gemini-media - Uses:
/codex-auto,/functionality-audit,/style-audit - Uses:
/theater-detect,/security-scan - Uses:
/swarm-init,/auto-agent
Other Skills
- Invokes:
quick-quality-check,smart-bug-fix(if issues found) - Output to:
code-review-assistant,documentation-generator
Usage Example
# Develop complete feature
feature-dev-complete "User authentication with JWT and refresh tokens"
# Feature with custom target
feature-dev-complete "Payment processing integration" src/payments/
# Feature without PR
feature-dev-complete "Dark mode toggle" --create-pr false
Failure Modes
- Research insufficient: Escalate to user for more context
- Tests fail after iterations: Manual intervention required
- Security issues critical: Block deployment, escalate
- Quality score too low: Run additional polish iterations
- Architecture unclear: Request user input on design decisions
Quick Install
/plugin add https://github.com/DNYoussef/ai-chrome-extension/tree/main/feature-dev-completeCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
smart-bug-fix
TestingThis skill provides an intelligent bug-fixing workflow that systematically identifies root causes using deep analysis and multi-model reasoning. It then generates fixes through Codex auto-fix and validates them with comprehensive testing and regression analysis. Use this skill for methodical debugging that combines automated fixes with thorough validation.
production-readiness
MetaThis Claude Skill performs comprehensive pre-deployment validation to ensure code is production-ready. It runs a complete audit pipeline including security scans, performance benchmarks, and documentation checks. Use it as a final deployment gate to generate a deployment checklist and verify all production requirements are met.
micro-skill-creator
MetaThe micro-skill-creator rapidly generates atomic, single-purpose skills optimized with evidence-based prompting and specialist agents. It produces highly focused components using patterns like self-consistency and plan-and-solve, validated through systematic testing. This makes it ideal for developers building reliable, composable workflow elements in Claude Code.
swarm-advanced
OtherThis skill provides advanced swarm orchestration patterns for complex distributed workflows in research, development, and testing. It enables developers to coordinate multiple specialized agents using both MCP tools and CLI commands for parallel processing. Use it when you need to manage sophisticated multi-agent systems with mesh topologies and distributed task coordination.
