copyright-docs
About
This Claude Skill generates software copyright design specification documents compliant with China Copyright Protection Center (CPCC) standards. It analyzes source code to automatically create complete design documents with Mermaid diagrams, specifically for software copyright registration and intellectual property protection. Use it when you need to prepare documentation for "软著申请" (software copyright application) or CPCC submissions.
Quick Install
Claude Code
Recommended/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/copyright-docsCopy and paste this command in Claude Code to install this skill
Documentation
Software Copyright Documentation Skill
Generate CPCC-compliant software design specification documents (软件设计说明书) through multi-phase code analysis.
Architecture Overview
┌─────────────────────────────────────────────────────────────────┐
│ Context-Optimized Architecture │
├─────────────────────────────────────────────────────────────────┤
│ │
│ Phase 1: Metadata → project-metadata.json │
│ ↓ │
│ Phase 2: 6 Parallel → sections/section-N.md (直接写MD) │
│ Agents ↓ 返回简要JSON │
│ ↓ │
│ Phase 2.5: Consolidation → cross-module-summary.md │
│ Agent ↓ 返回问题列表 │
│ ↓ │
│ Phase 4: Assembly → 合并MD + 跨模块总结 │
│ ↓ │
│ Phase 5: Refinement → 最终文档 │
│ │
└─────────────────────────────────────────────────────────────────┘
Key Design Principles
- Agent 直接输出 MD: 避免 JSON → MD 转换的上下文开销
- 简要返回: Agent 只返回路径+摘要,不返回完整内容
- 汇总 Agent: 独立 Agent 负责跨模块问题检测
- 引用合并: Phase 4 读取文件合并,不在上下文中传递
Execution Flow
┌─────────────────────────────────────────────────────────────────┐
│ Phase 1: Metadata Collection │
│ → Read: phases/01-metadata-collection.md │
│ → Collect: software name, version, category, scope │
│ → Output: project-metadata.json │
├─────────────────────────────────────────────────────────────────┤
│ Phase 2: Deep Code Analysis (6 Parallel Agents) │
│ → Read: phases/02-deep-analysis.md │
│ → Reference: specs/cpcc-requirements.md │
│ → Each Agent: 分析代码 → 直接写 sections/section-N.md │
│ → Return: {"status", "output_file", "summary", "cross_notes"} │
├─────────────────────────────────────────────────────────────────┤
│ Phase 2.5: Consolidation (New!) │
│ → Read: phases/02.5-consolidation.md │
│ → Input: Agent 返回的简要信息 + cross_module_notes │
│ → Analyze: 一致性/完整性/关联性/质量检查 │
│ → Output: cross-module-summary.md │
│ → Return: {"issues": {errors, warnings, info}, "stats"} │
├─────────────────────────────────────────────────────────────────┤
│ Phase 4: Document Assembly │
│ → Read: phases/04-document-assembly.md │
│ → Check: 如有 errors,提示用户处理 │
│ → Merge: Section 1 + sections/*.md + 跨模块附录 │
│ → Output: {软件名称}-软件设计说明书.md │
├─────────────────────────────────────────────────────────────────┤
│ Phase 5: Compliance Review & Refinement │
│ → Read: phases/05-compliance-refinement.md │
│ → Reference: specs/cpcc-requirements.md │
│ → Loop: 发现问题 → 提问 → 修复 → 重新检查 │
└─────────────────────────────────────────────────────────────────┘
Document Sections (7 Required)
| Section | Title | Diagram | Agent |
|---|---|---|---|
| 1 | 软件概述 | - | Phase 4 生成 |
| 2 | 系统架构图 | graph TD | architecture |
| 3 | 功能模块设计 | flowchart TD | functions |
| 4 | 核心算法与流程 | flowchart TD | algorithms |
| 5 | 数据结构设计 | classDiagram | data_structures |
| 6 | 接口设计 | sequenceDiagram | interfaces |
| 7 | 异常处理设计 | flowchart TD | exceptions |
Directory Setup
// 生成时间戳目录名
const timestamp = new Date().toISOString().slice(0,19).replace(/[-:T]/g, '');
const dir = `.workflow/.scratchpad/copyright-${timestamp}`;
// Windows (cmd)
Bash(`mkdir "${dir}\\sections"`);
Bash(`mkdir "${dir}\\iterations"`);
// Unix/macOS
// Bash(`mkdir -p "${dir}/sections" "${dir}/iterations"`);
Output Structure
.workflow/.scratchpad/copyright-{timestamp}/
├── project-metadata.json # Phase 1
├── sections/ # Phase 2 (Agent 直接写入)
│ ├── section-2-architecture.md
│ ├── section-3-functions.md
│ ├── section-4-algorithms.md
│ ├── section-5-data-structures.md
│ ├── section-6-interfaces.md
│ └── section-7-exceptions.md
├── cross-module-summary.md # Phase 2.5
├── iterations/ # Phase 5
│ ├── v1.md
│ └── v2.md
└── {软件名称}-软件设计说明书.md # Final Output
Reference Documents
| Document | Purpose |
|---|---|
| phases/01-metadata-collection.md | Software info collection |
| phases/02-deep-analysis.md | 6-agent parallel analysis |
| phases/02.5-consolidation.md | Cross-module consolidation |
| phases/04-document-assembly.md | Document merge & assembly |
| phases/05-compliance-refinement.md | Iterative refinement loop |
| specs/cpcc-requirements.md | CPCC compliance checklist |
| templates/agent-base.md | Agent prompt templates |
| ../_shared/mermaid-utils.md | Shared Mermaid utilities |
GitHub Repository
Related Skills
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
MetaThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
