About
This PDF manipulation toolkit enables developers to programmatically process and analyze documents through text and table extraction, PDF creation, and file operations like merging and splitting. It also supports form filling capabilities for automated document workflows. Use this skill when you need to integrate PDF processing into your applications using Python libraries and command-line tools.
Quick Install
Claude Code
Recommended/plugin add https://github.com/K-Dense-AI/claude-scientific-writergit clone https://github.com/K-Dense-AI/claude-scientific-writer.git ~/.claude/skills/pdfCopy and paste this command in Claude Code to install this skill
Documentation
PDF Processing Guide
Overview
Extract text/tables, create PDFs, merge/split files, fill forms using Python libraries and command-line tools. Apply this skill for programmatic document processing and analysis. For advanced features or form filling, consult reference.md and forms.md.
Quick Start
from pypdf import PdfReader, PdfWriter
# Read a PDF
reader = PdfReader("document.pdf")
print(f"Pages: {len(reader.pages)}")
# Extract text
text = ""
for page in reader.pages:
text += page.extract_text()
Python Libraries
pypdf - Basic Operations
Merge PDFs
from pypdf import PdfWriter, PdfReader
writer = PdfWriter()
for pdf_file in ["doc1.pdf", "doc2.pdf", "doc3.pdf"]:
reader = PdfReader(pdf_file)
for page in reader.pages:
writer.add_page(page)
with open("merged.pdf", "wb") as output:
writer.write(output)
Split PDF
reader = PdfReader("input.pdf")
for i, page in enumerate(reader.pages):
writer = PdfWriter()
writer.add_page(page)
with open(f"page_{i+1}.pdf", "wb") as output:
writer.write(output)
Extract Metadata
reader = PdfReader("document.pdf")
meta = reader.metadata
print(f"Title: {meta.title}")
print(f"Author: {meta.author}")
print(f"Subject: {meta.subject}")
print(f"Creator: {meta.creator}")
Rotate Pages
reader = PdfReader("input.pdf")
writer = PdfWriter()
page = reader.pages[0]
page.rotate(90) # Rotate 90 degrees clockwise
writer.add_page(page)
with open("rotated.pdf", "wb") as output:
writer.write(output)
pdfplumber - Text and Table Extraction
Extract Text with Layout
import pdfplumber
with pdfplumber.open("document.pdf") as pdf:
for page in pdf.pages:
text = page.extract_text()
print(text)
Extract Tables
with pdfplumber.open("document.pdf") as pdf:
for i, page in enumerate(pdf.pages):
tables = page.extract_tables()
for j, table in enumerate(tables):
print(f"Table {j+1} on page {i+1}:")
for row in table:
print(row)
Advanced Table Extraction
import pandas as pd
with pdfplumber.open("document.pdf") as pdf:
all_tables = []
for page in pdf.pages:
tables = page.extract_tables()
for table in tables:
if table: # Check if table is not empty
df = pd.DataFrame(table[1:], columns=table[0])
all_tables.append(df)
# Combine all tables
if all_tables:
combined_df = pd.concat(all_tables, ignore_index=True)
combined_df.to_excel("extracted_tables.xlsx", index=False)
reportlab - Create PDFs
Basic PDF Creation
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
c = canvas.Canvas("hello.pdf", pagesize=letter)
width, height = letter
# Add text
c.drawString(100, height - 100, "Hello World!")
c.drawString(100, height - 120, "This is a PDF created with reportlab")
# Add a line
c.line(100, height - 140, 400, height - 140)
# Save
c.save()
Create PDF with Multiple Pages
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, PageBreak
from reportlab.lib.styles import getSampleStyleSheet
doc = SimpleDocTemplate("report.pdf", pagesize=letter)
styles = getSampleStyleSheet()
story = []
# Add content
title = Paragraph("Report Title", styles['Title'])
story.append(title)
story.append(Spacer(1, 12))
body = Paragraph("This is the body of the report. " * 20, styles['Normal'])
story.append(body)
story.append(PageBreak())
# Page 2
story.append(Paragraph("Page 2", styles['Heading1']))
story.append(Paragraph("Content for page 2", styles['Normal']))
# Build PDF
doc.build(story)
Command-Line Tools
pdftotext (poppler-utils)
# Extract text
pdftotext input.pdf output.txt
# Extract text preserving layout
pdftotext -layout input.pdf output.txt
# Extract specific pages
pdftotext -f 1 -l 5 input.pdf output.txt # Pages 1-5
qpdf
# Merge PDFs
qpdf --empty --pages file1.pdf file2.pdf -- merged.pdf
# Split pages
qpdf input.pdf --pages . 1-5 -- pages1-5.pdf
qpdf input.pdf --pages . 6-10 -- pages6-10.pdf
# Rotate pages
qpdf input.pdf output.pdf --rotate=+90:1 # Rotate page 1 by 90 degrees
# Remove password
qpdf --password=mypassword --decrypt encrypted.pdf decrypted.pdf
pdftk (if available)
# Merge
pdftk file1.pdf file2.pdf cat output merged.pdf
# Split
pdftk input.pdf burst
# Rotate
pdftk input.pdf rotate 1east output rotated.pdf
Common Tasks
Extract Text from Scanned PDFs
# Requires: pip install pytesseract pdf2image
import pytesseract
from pdf2image import convert_from_path
# Convert PDF to images
images = convert_from_path('scanned.pdf')
# OCR each page
text = ""
for i, image in enumerate(images):
text += f"Page {i+1}:\n"
text += pytesseract.image_to_string(image)
text += "\n\n"
print(text)
Add Watermark
from pypdf import PdfReader, PdfWriter
# Create watermark (or load existing)
watermark = PdfReader("watermark.pdf").pages[0]
# Apply to all pages
reader = PdfReader("document.pdf")
writer = PdfWriter()
for page in reader.pages:
page.merge_page(watermark)
writer.add_page(page)
with open("watermarked.pdf", "wb") as output:
writer.write(output)
Extract Images
# Using pdfimages (poppler-utils)
pdfimages -j input.pdf output_prefix
# This extracts all images as output_prefix-000.jpg, output_prefix-001.jpg, etc.
Password Protection
from pypdf import PdfReader, PdfWriter
reader = PdfReader("input.pdf")
writer = PdfWriter()
for page in reader.pages:
writer.add_page(page)
# Add password
writer.encrypt("userpassword", "ownerpassword")
with open("encrypted.pdf", "wb") as output:
writer.write(output)
Quick Reference
| Task | Best Tool | Command/Code |
|---|---|---|
| Merge PDFs | pypdf | writer.add_page(page) |
| Split PDFs | pypdf | One page per file |
| Extract text | pdfplumber | page.extract_text() |
| Extract tables | pdfplumber | page.extract_tables() |
| Create PDFs | reportlab | Canvas or Platypus |
| Command line merge | qpdf | qpdf --empty --pages ... |
| OCR scanned PDFs | pytesseract | Convert to image first |
| Fill PDF forms | pdf-lib or pypdf (see forms.md) | See forms.md |
Next Steps
- For advanced pypdfium2 usage, see reference.md
- For JavaScript libraries (pdf-lib), see reference.md
- If you need to fill out a PDF form, follow the instructions in forms.md
- For troubleshooting guides, see reference.md
GitHub Repository
Related Skills
content-collections
MetaThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
llamaindex
MetaLlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.
canvas-design
MetaThe canvas-design skill generates original visual art in PNG and PDF formats for creating posters, designs, and other static artwork. It operates through a two-step process: first creating a design philosophy document, then visually expressing it on a canvas. The skill focuses on original compositions using form, color, and space while avoiding copyright infringement by never copying existing artists' work.
go-test
MetaThe go-test skill provides expertise in Go's standard testing package and best practices. It helps developers implement table-driven tests, subtests, benchmarks, and coverage strategies while following Go conventions. Use it when writing test files, creating mocks, detecting race conditions, or organizing integration tests in Go projects.
