Back to Skills

grafana-dashboard

aj-geddes
Updated Today
22 views
7
7
View on GitHub
Metadesigndata

About

This Claude Skill generates professional Grafana dashboards with visualizations, templating, and alerts. It's designed for developers building monitoring dashboards, creating data visualizations, or setting up operational insights. The skill provides JSON templates for comprehensive dashboards with multiple visualization types and drill-down capabilities.

Documentation

Grafana Dashboard

Overview

Design and implement comprehensive Grafana dashboards with multiple visualization types, variables, and drill-down capabilities for operational monitoring.

When to Use

  • Creating monitoring dashboards
  • Building operational insights
  • Visualizing time-series data
  • Creating drill-down dashboards
  • Sharing metrics with stakeholders

Instructions

1. Grafana Dashboard JSON

{
  "dashboard": {
    "title": "Application Performance",
    "description": "Real-time application metrics",
    "tags": ["production", "performance"],
    "timezone": "UTC",
    "refresh": "30s",
    "templating": {
      "list": [
        {
          "name": "datasource",
          "type": "datasource",
          "datasource": "prometheus"
        },
        {
          "name": "service",
          "type": "query",
          "datasource": "prometheus",
          "query": "label_values(requests_total, service)"
        }
      ]
    },
    "panels": [
      {
        "id": 1,
        "title": "Request Rate",
        "type": "graph",
        "gridPos": {"x": 0, "y": 0, "w": 12, "h": 8},
        "targets": [
          {
            "expr": "sum(rate(requests_total{service=\"$service\"}[5m]))",
            "legendFormat": "{{ method }}"
          }
        ],
        "yaxes": [
          {
            "format": "rps",
            "label": "Requests per Second"
          }
        ]
      },
      {
        "id": 2,
        "title": "Error Rate",
        "type": "graph",
        "gridPos": {"x": 12, "y": 0, "w": 12, "h": 8},
        "targets": [
          {
            "expr": "sum(rate(requests_total{status_code=~\"5..\",service=\"$service\"}[5m])) / sum(rate(requests_total{service=\"$service\"}[5m]))",
            "legendFormat": "Error Rate"
          }
        ]
      },
      {
        "id": 3,
        "title": "Response Latency (p95)",
        "type": "graph",
        "gridPos": {"x": 0, "y": 8, "w": 12, "h": 8},
        "targets": [
          {
            "expr": "histogram_quantile(0.95, rate(request_duration_seconds_bucket{service=\"$service\"}[5m]))",
            "legendFormat": "p95"
          }
        ]
      },
      {
        "id": 4,
        "title": "Active Connections",
        "type": "stat",
        "gridPos": {"x": 12, "y": 8, "w": 12, "h": 8},
        "targets": [
          {
            "expr": "sum(active_connections{service=\"$service\"})"
          }
        ]
      }
    ]
  }
}

2. Grafana Provisioning Configuration

# /etc/grafana/provisioning/dashboards/dashboards.yaml
apiVersion: 1

providers:
  - name: 'Dashboards'
    orgId: 1
    folder: 'Production'
    type: file
    disableDeletion: false
    updateIntervalSeconds: 10
    options:
      path: /var/lib/grafana/dashboards
# /etc/grafana/provisioning/datasources/prometheus.yaml
apiVersion: 1

datasources:
  - name: Prometheus
    type: prometheus
    access: proxy
    orgId: 1
    url: http://prometheus:9090
    isDefault: true
    editable: true
    jsonData:
      timeInterval: '30s'

3. Grafana Alert Configuration

# /etc/grafana/provisioning/alerting/alerts.yaml
groups:
  - name: application_alerts
    interval: 1m
    rules:
      - uid: alert_high_error_rate
        title: High Error Rate
        condition: B
        data:
          - refId: A
            model:
              expr: 'sum(rate(requests_total{status_code=~"5.."}[5m]))'
          - refId: B
            conditions:
              - evaluator:
                  params: [0.05]
                  type: gt
                query:
                  params: [A, 5m, now]
        for: 5m
        annotations:
          description: 'Error rate is {{ $values.A }}'
        labels:
          severity: critical
          team: platform

4. Grafana API Client

// grafana-api-client.js
const axios = require('axios');

class GrafanaClient {
  constructor(baseUrl, apiKey) {
    this.baseUrl = baseUrl;
    this.client = axios.create({
      baseURL: baseUrl,
      headers: {
        'Authorization': `Bearer ${apiKey}`,
        'Content-Type': 'application/json'
      }
    });
  }

  async createDashboard(dashboard) {
    const response = await this.client.post('/api/dashboards/db', {
      dashboard: dashboard,
      overwrite: true
    });
    return response.data;
  }

  async getDashboard(uid) {
    const response = await this.client.get(`/api/dashboards/uid/${uid}`);
    return response.data;
  }

  async createAlert(alert) {
    const response = await this.client.post('/api/alerts', alert);
    return response.data;
  }

  async listDashboards() {
    const response = await this.client.get('/api/search?query=');
    return response.data;
  }
}

module.exports = GrafanaClient;

5. Docker Compose Setup

version: '3.8'
services:
  grafana:
    image: grafana/grafana:latest
    ports:
      - "3000:3000"
    environment:
      GF_SECURITY_ADMIN_PASSWORD: ${GRAFANA_PASSWORD:-admin}
      GF_USERS_ALLOW_SIGN_UP: 'false'
      GF_SERVER_ROOT_URL: http://grafana.example.com
    volumes:
      - ./provisioning:/etc/grafana/provisioning
      - grafana_storage:/var/lib/grafana
    depends_on:
      - prometheus

  prometheus:
    image: prom/prometheus:latest
    ports:
      - "9090:9090"
    volumes:
      - ./prometheus.yml:/etc/prometheus/prometheus.yml
      - prometheus_storage:/prometheus

volumes:
  grafana_storage:
  prometheus_storage:

Best Practices

✅ DO

  • Use meaningful dashboard titles
  • Add documentation panels
  • Implement row-based organization
  • Use variables for flexibility
  • Set appropriate refresh intervals
  • Include runbook links in alerts
  • Test alerts before deploying
  • Use consistent color schemes
  • Version control dashboard JSON

❌ DON'T

  • Overload dashboards with too many panels
  • Mix different time ranges without justification
  • Create without runbooks
  • Ignore alert noise
  • Use inconsistent metric naming
  • Set refresh too frequently
  • Forget to configure datasources
  • Leave default passwords

Visualization Types

  • Graph: Time-series trends
  • Stat: Single value with thresholds
  • Gauge: Percentage or usage
  • Heatmap: Pattern detection
  • Bar Chart: Category comparison
  • Pie Chart: Composition

Quick Install

/plugin add https://github.com/aj-geddes/useful-ai-prompts/tree/main/grafana-dashboard

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

aj-geddes/useful-ai-prompts
Path: skills/grafana-dashboard

Related Skills

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

Algorithmic Art Generation

Meta

This skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.

View skill

webapp-testing

Testing

This Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.

View skill

finishing-a-development-branch

Testing

This skill helps developers complete finished work by verifying tests pass and then presenting structured integration options. It guides the workflow for merging, creating PRs, or cleaning up branches after implementation is done. Use it when your code is ready and tested to systematically finalize the development process.

View skill