Back to Skills

A/B Test Analysis

aj-geddes
Updated Today
23 views
7
7
View on GitHub
Testingtestingdesign

About

This Claude Skill helps developers design and analyze A/B tests for conversion optimization and experiment validation. It provides capabilities to calculate statistical significance, determine required sample sizes, and perform the full analysis workflow. Use it to make data-driven decisions when comparing two variants of a feature or user interface.

Documentation

A/B Test Analysis

A/B testing is a statistical method to compare two variants and determine which performs better, enabling data-driven optimization decisions.

Core Components

  • Control Group: Original version (A)
  • Treatment Group: New variant (B)
  • Metric: Outcome being measured
  • Sample Size: Observations needed for power
  • Significance Level: Type I error threshold (α = 0.05)
  • Power: 1 - Type II error (typically 0.80)

Analysis Steps

  1. Define success metric
  2. Calculate sample size
  3. Run experiment
  4. Check assumptions
  5. Perform statistical test
  6. Calculate effect size
  7. Interpret results

Implementation with Python

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from scipy.stats import binom_test, ttest_ind, chi2_contingency
import seaborn as sns

# Sample A/B test data
np.random.seed(42)

# Scenario: Testing new checkout flow
control_conversions = np.random.binomial(1, 0.10, 10000)
treatment_conversions = np.random.binomial(1, 0.12, 10000)

control_revenue = np.random.exponential(50, 10000)
treatment_revenue = np.random.exponential(55, 10000)

# Create dataframes
df_control = pd.DataFrame({
    'group': 'Control',
    'converted': control_conversions,
    'revenue': control_revenue,
})

df_treatment = pd.DataFrame({
    'group': 'Treatment',
    'converted': treatment_conversions,
    'revenue': treatment_revenue,
})

df = pd.concat([df_control, df_treatment], ignore_index=True)

print("A/B Test Data Summary:")
print(df.groupby('group')[['converted', 'revenue']].agg({
    'converted': ['sum', 'count', 'mean'],
    'revenue': ['sum', 'mean', 'std'],
}))

# 1. Conversion Rate Test (Chi-square)
contingency_table = pd.crosstab(df['group'], df['converted'])
print("\nContingency Table:")
print(contingency_table)

chi2, p_value, dof, expected = chi2_contingency(contingency_table)
print(f"\nChi-square Test:")
print(f"Chi2 statistic: {chi2:.4f}")
print(f"P-value: {p_value:.4f}")
print(f"Significant: {'Yes' if p_value < 0.05 else 'No'}")

# 2. Conversion Rate Calculation
control_cr = df[df['group'] == 'Control']['converted'].mean()
treatment_cr = df[df['group'] == 'Treatment']['converted'].mean()
lift = (treatment_cr - control_cr) / control_cr * 100

print(f"\nConversion Rates:")
print(f"Control: {control_cr:.4f} ({control_cr*100:.2f}%)")
print(f"Treatment: {treatment_cr:.4f} ({treatment_cr*100:.2f}%)")
print(f"Lift: {lift:.2f}%")

# 3. Revenue Per User Test (T-test)
control_revenue = df[df['group'] == 'Control']['revenue']
treatment_revenue = df[df['group'] == 'Treatment']['revenue']

t_stat, p_value_revenue = ttest_ind(control_revenue, treatment_revenue)
print(f"\nRevenue Per User T-test:")
print(f"Control Mean: ${control_revenue.mean():.2f}")
print(f"Treatment Mean: ${treatment_revenue.mean():.2f}")
print(f"T-statistic: {t_stat:.4f}")
print(f"P-value: {p_value_revenue:.4f}")
print(f"Significant: {'Yes' if p_value_revenue < 0.05 else 'No'}")

# 4. Effect Size (Cohen's d)
def cohens_d(group1, group2):
    n1, n2 = len(group1), len(group2)
    var1, var2 = np.var(group1, ddof=1), np.var(group2, ddof=1)
    pooled_std = np.sqrt(((n1-1)*var1 + (n2-1)*var2) / (n1+n2-2))
    return (np.mean(group1) - np.mean(group2)) / pooled_std

effect_size = cohens_d(control_revenue, treatment_revenue)
print(f"\nEffect Size (Cohen's d): {effect_size:.4f}")
print("Interpretation: " + {
    True: "Small effect (|d| < 0.2)",
    False: {
        True: "Medium effect (0.2 <= |d| < 0.8)",
        False: "Large effect (|d| >= 0.8)"
    }[abs(effect_size) < 0.8]
}[abs(effect_size) < 0.2])

# 5. Confidence Intervals
def confidence_interval(data, confidence=0.95):
    n = len(data)
    mean = np.mean(data)
    se = stats.sem(data)
    margin = se * stats.t.ppf((1 + confidence) / 2, n - 1)
    return mean - margin, mean + margin

ci_control = confidence_interval(control_revenue)
ci_treatment = confidence_interval(treatment_revenue)

print(f"\n95% Confidence Intervals:")
print(f"Control: (${ci_control[0]:.2f}, ${ci_control[1]:.2f})")
print(f"Treatment: (${ci_treatment[0]:.2f}, ${ci_treatment[1]:.2f})")

# 6. Sample Size Calculation
def calculate_sample_size(baseline_cr, target_cr, significance=0.05, power=0.80):
    from scipy.stats import norm
    effect_size = 2 * (np.arcsin(np.sqrt(target_cr)) - np.arcsin(np.sqrt(baseline_cr)))
    z_alpha = norm.ppf(1 - significance/2)
    z_beta = norm.ppf(power)
    n = ((z_alpha + z_beta) / effect_size) ** 2
    return int(np.ceil(n))

sample_size_needed = calculate_sample_size(control_cr, treatment_cr)
print(f"\nSample Size Analysis:")
print(f"Baseline CR: {control_cr:.4f}")
print(f"Target CR: {treatment_cr:.4f}")
print(f"Required per group: {sample_size_needed:,}")
print(f"Actual per group: {len(df[df['group'] == 'Control']):,}")

# 7. Sequential Testing / Running Analysis
fig, axes = plt.subplots(2, 2, figsize=(14, 8))

# Cumulative conversion rates
control_cumsum = df[df['group'] == 'Control']['converted'].cumsum()
treatment_cumsum = df[df['group'] == 'Treatment']['converted'].cumsum()
control_n = np.arange(1, len(control_cumsum) + 1)
treatment_n = np.arange(1, len(treatment_cumsum) + 1)

axes[0, 0].plot(control_n, control_cumsum / control_n, label='Control', alpha=0.7)
axes[0, 0].plot(treatment_n, treatment_cumsum / treatment_n, label='Treatment', alpha=0.7)
axes[0, 0].set_xlabel('Sample Size')
axes[0, 0].set_ylabel('Conversion Rate')
axes[0, 0].set_title('Conversion Rate Over Time')
axes[0, 0].legend()
axes[0, 0].grid(True, alpha=0.3)

# Distribution comparison
axes[0, 1].hist(control_revenue, bins=50, alpha=0.5, label='Control', density=True)
axes[0, 1].hist(treatment_revenue, bins=50, alpha=0.5, label='Treatment', density=True)
axes[0, 1].set_xlabel('Revenue')
axes[0, 1].set_ylabel('Density')
axes[0, 1].set_title('Revenue Distribution')
axes[0, 1].legend()

# Box plot comparison
data_box = [control_revenue, treatment_revenue]
axes[1, 0].boxplot(data_box, labels=['Control', 'Treatment'])
axes[1, 0].set_ylabel('Revenue')
axes[1, 0].set_title('Revenue Distribution (Box Plot)')
axes[1, 0].grid(True, alpha=0.3, axis='y')

# Conversion comparison
conversion_data = pd.DataFrame({
    'Group': ['Control', 'Treatment'],
    'Converted': [control_conversions.sum(), treatment_conversions.sum()],
    'Not Converted': [len(control_conversions) - control_conversions.sum(),
                      len(treatment_conversions) - treatment_conversions.sum()],
})
conversion_data.set_index('Group')[['Converted', 'Not Converted']].plot(
    kind='bar', ax=axes[1, 1], color=['green', 'red'], edgecolor='black'
)
axes[1, 1].set_title('Conversion Comparison')
axes[1, 1].set_ylabel('Count')
axes[1, 1].legend(title='Status')

plt.tight_layout()
plt.show()

# 8. Bayesian Perspective
print("\n8. Bayesian Analysis (informative):")
from scipy.stats import beta

# Assume prior Beta(1, 1) - uninformative
control_successes = control_conversions.sum()
control_failures = len(control_conversions) - control_successes
treatment_successes = treatment_conversions.sum()
treatment_failures = len(treatment_conversions) - treatment_successes

# Posterior distributions
posterior_control = beta(1 + control_successes, 1 + control_failures)
posterior_treatment = beta(1 + treatment_successes, 1 + treatment_failures)

samples_control = posterior_control.rvs(10000)
samples_treatment = posterior_treatment.rvs(10000)

prob_treatment_better = (samples_treatment > samples_control).mean()
print(f"Probability Treatment > Control: {prob_treatment_better:.4f}")

# Visualization
fig, ax = plt.subplots(figsize=(10, 5))
ax.hist(samples_control, bins=50, alpha=0.5, label='Control', density=True)
ax.hist(samples_treatment, bins=50, alpha=0.5, label='Treatment', density=True)
ax.set_xlabel('Conversion Rate')
ax.set_ylabel('Density')
ax.set_title('Bayesian Posterior Distributions')
ax.legend()
ax.grid(True, alpha=0.3)
plt.show()

# 9. Summary Report
print("\n" + "="*50)
print("A/B TEST SUMMARY REPORT")
print("="*50)
print(f"Metric: Conversion Rate")
print(f"Control CR: {control_cr*100:.2f}%")
print(f"Treatment CR: {treatment_cr*100:.2f}%")
print(f"Lift: {lift:.2f}%")
print(f"P-value: {p_value:.4f}")
print(f"Result: {'REJECT H0 - Significant Difference' if p_value < 0.05 else 'FAIL TO REJECT H0 - No Significant Difference'}")
print(f"Winner: {f'Treatment (+{lift:.2f}%)' if p_value < 0.05 and lift > 0 else 'Control (No clear winner)'}")
print("="*50)

Sample Size Determination

  • Baseline conversion rate: Current performance
  • Target effect size: Minimum detectable difference
  • Significance level (α): Usually 0.05
  • Power (1-β): Usually 0.80 or 0.90

Key Metrics

  • Conversion Rate: Proportion of successes
  • Revenue Per User: Average transaction value
  • Click-through Rate: Ad performance
  • Engagement: Feature adoption

Deliverables

  • Test design document
  • Sample size calculations
  • Statistical test results
  • Effect size measurements
  • Confidence intervals
  • Visualization of results
  • Executive summary with recommendation

Quick Install

/plugin add https://github.com/aj-geddes/useful-ai-prompts/tree/main/ab-test-analysis

Copy and paste this command in Claude Code to install this skill

GitHub 仓库

aj-geddes/useful-ai-prompts
Path: skills/ab-test-analysis

Related Skills

evaluating-llms-harness

Testing

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

Algorithmic Art Generation

Meta

This skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.

View skill

webapp-testing

Testing

This Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.

View skill