building-neural-networks
About
This Claude skill enables developers to create and modify neural network architectures using the neural-network-builder plugin. It handles requests for building new networks, configuring layers, parameters, and training processes for various network types like CNNs, RNNs, and transformers. Use this skill when you need assistance with defining or refining neural network structures.
Documentation
Overview
This skill empowers Claude to design and implement neural networks tailored to specific tasks. It leverages the neural-network-builder plugin to automate the process of defining network architectures, configuring layers, and setting training parameters. This ensures efficient and accurate creation of neural network models.
How It Works
- Analyzing Requirements: Claude analyzes the user's request to understand the desired neural network architecture, task, and performance goals.
- Generating Configuration: Based on the analysis, Claude generates the appropriate configuration for the neural-network-builder plugin, specifying the layers, activation functions, and other relevant parameters.
- Executing Build: Claude executes the
build-nncommand, triggering the neural-network-builder plugin to construct the neural network based on the generated configuration.
When to Use This Skill
This skill activates when you need to:
- Create a new neural network architecture for a specific machine learning task.
- Modify an existing neural network's layers, parameters, or training process.
- Design a neural network using specific layer types, such as convolutional, recurrent, or transformer layers.
Examples
Example 1: Image Classification
User request: "Build a convolutional neural network for image classification with three convolutional layers and two fully connected layers."
The skill will:
- Analyze the request and determine the required CNN architecture.
- Generate the configuration for the
build-nncommand, specifying the layer types, filter sizes, and activation functions.
Example 2: Text Generation
User request: "Define an RNN architecture for text generation with LSTM cells and an embedding layer."
The skill will:
- Analyze the request and determine the required RNN architecture.
- Generate the configuration for the
build-nncommand, specifying the LSTM cell parameters, embedding dimension, and output layer.
Best Practices
- Layer Selection: Choose appropriate layer types (e.g., convolutional, recurrent, transformer) based on the task and data characteristics.
- Parameter Tuning: Experiment with different parameter values (e.g., learning rate, batch size, number of layers) to optimize performance.
- Regularization: Implement regularization techniques (e.g., dropout, L1/L2 regularization) to prevent overfitting.
Integration
This skill integrates with the core Claude Code environment by utilizing the build-nn command provided by the neural-network-builder plugin. It can be combined with other skills for data preprocessing, model evaluation, and deployment.
Quick Install
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus/tree/main/neural-network-builderCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
