rag-implementation
About
This skill enables developers to implement Retrieval-Augmented Generation (RAG) systems using vector databases and semantic search. It's designed for building knowledge-grounded AI applications like document Q&A systems and chatbots that require factual accuracy. The implementation focuses on reducing LLM hallucinations by grounding responses in external knowledge sources.
Documentation
RAG Implementation
Master Retrieval-Augmented Generation (RAG) to build LLM applications that provide accurate, grounded responses using external knowledge sources.
When to Use This Skill
- Building Q&A systems over proprietary documents
- Creating chatbots with current, factual information
- Implementing semantic search with natural language queries
- Reducing hallucinations with grounded responses
- Enabling LLMs to access domain-specific knowledge
- Building documentation assistants
- Creating research tools with source citation
Core Components
1. Vector Databases
Purpose: Store and retrieve document embeddings efficiently
Options:
- Pinecone: Managed, scalable, fast queries
- Weaviate: Open-source, hybrid search
- Milvus: High performance, on-premise
- Chroma: Lightweight, easy to use
- Qdrant: Fast, filtered search
- FAISS: Meta's library, local deployment
2. Embeddings
Purpose: Convert text to numerical vectors for similarity search
Models:
- text-embedding-ada-002 (OpenAI): General purpose, 1536 dims
- all-MiniLM-L6-v2 (Sentence Transformers): Fast, lightweight
- e5-large-v2: High quality, multilingual
- Instructor: Task-specific instructions
- bge-large-en-v1.5: SOTA performance
3. Retrieval Strategies
Approaches:
- Dense Retrieval: Semantic similarity via embeddings
- Sparse Retrieval: Keyword matching (BM25, TF-IDF)
- Hybrid Search: Combine dense + sparse
- Multi-Query: Generate multiple query variations
- HyDE: Generate hypothetical documents
4. Reranking
Purpose: Improve retrieval quality by reordering results
Methods:
- Cross-Encoders: BERT-based reranking
- Cohere Rerank: API-based reranking
- Maximal Marginal Relevance (MMR): Diversity + relevance
- LLM-based: Use LLM to score relevance
Quick Start
from langchain.document_loaders import DirectoryLoader
from langchain.text_splitters import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
# 1. Load documents
loader = DirectoryLoader('./docs', glob="**/*.txt")
documents = loader.load()
# 2. Split into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_documents(documents)
# 3. Create embeddings and vector store
embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_documents(chunks, embeddings)
# 4. Create retrieval chain
qa_chain = RetrievalQA.from_chain_type(
llm=OpenAI(),
chain_type="stuff",
retriever=vectorstore.as_retriever(search_kwargs={"k": 4}),
return_source_documents=True
)
# 5. Query
result = qa_chain({"query": "What are the main features?"})
print(result['result'])
print(result['source_documents'])
Advanced RAG Patterns
Pattern 1: Hybrid Search
from langchain.retrievers import BM25Retriever, EnsembleRetriever
# Sparse retriever (BM25)
bm25_retriever = BM25Retriever.from_documents(chunks)
bm25_retriever.k = 5
# Dense retriever (embeddings)
embedding_retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
# Combine with weights
ensemble_retriever = EnsembleRetriever(
retrievers=[bm25_retriever, embedding_retriever],
weights=[0.3, 0.7]
)
Pattern 2: Multi-Query Retrieval
from langchain.retrievers.multi_query import MultiQueryRetriever
# Generate multiple query perspectives
retriever = MultiQueryRetriever.from_llm(
retriever=vectorstore.as_retriever(),
llm=OpenAI()
)
# Single query → multiple variations → combined results
results = retriever.get_relevant_documents("What is the main topic?")
Pattern 3: Contextual Compression
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
compressor = LLMChainExtractor.from_llm(llm)
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor,
base_retriever=vectorstore.as_retriever()
)
# Returns only relevant parts of documents
compressed_docs = compression_retriever.get_relevant_documents("query")
Pattern 4: Parent Document Retriever
from langchain.retrievers import ParentDocumentRetriever
from langchain.storage import InMemoryStore
# Store for parent documents
store = InMemoryStore()
# Small chunks for retrieval, large chunks for context
child_splitter = RecursiveCharacterTextSplitter(chunk_size=400)
parent_splitter = RecursiveCharacterTextSplitter(chunk_size=2000)
retriever = ParentDocumentRetriever(
vectorstore=vectorstore,
docstore=store,
child_splitter=child_splitter,
parent_splitter=parent_splitter
)
Document Chunking Strategies
Recursive Character Text Splitter
from langchain.text_splitters import RecursiveCharacterTextSplitter
splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
separators=["\n\n", "\n", " ", ""] # Try these in order
)
Token-Based Splitting
from langchain.text_splitters import TokenTextSplitter
splitter = TokenTextSplitter(
chunk_size=512,
chunk_overlap=50
)
Semantic Chunking
from langchain.text_splitters import SemanticChunker
splitter = SemanticChunker(
embeddings=OpenAIEmbeddings(),
breakpoint_threshold_type="percentile"
)
Markdown Header Splitter
from langchain.text_splitters import MarkdownHeaderTextSplitter
headers_to_split_on = [
("#", "Header 1"),
("##", "Header 2"),
("###", "Header 3"),
]
splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
Vector Store Configurations
Pinecone
import pinecone
from langchain.vectorstores import Pinecone
pinecone.init(api_key="your-api-key", environment="us-west1-gcp")
index = pinecone.Index("your-index-name")
vectorstore = Pinecone(index, embeddings.embed_query, "text")
Weaviate
import weaviate
from langchain.vectorstores import Weaviate
client = weaviate.Client("http://localhost:8080")
vectorstore = Weaviate(client, "Document", "content", embeddings)
Chroma (Local)
from langchain.vectorstores import Chroma
vectorstore = Chroma(
collection_name="my_collection",
embedding_function=embeddings,
persist_directory="./chroma_db"
)
Retrieval Optimization
1. Metadata Filtering
# Add metadata during indexing
chunks_with_metadata = []
for i, chunk in enumerate(chunks):
chunk.metadata = {
"source": chunk.metadata.get("source"),
"page": i,
"category": determine_category(chunk.page_content)
}
chunks_with_metadata.append(chunk)
# Filter during retrieval
results = vectorstore.similarity_search(
"query",
filter={"category": "technical"},
k=5
)
2. Maximal Marginal Relevance
# Balance relevance with diversity
results = vectorstore.max_marginal_relevance_search(
"query",
k=5,
fetch_k=20, # Fetch 20, return top 5 diverse
lambda_mult=0.5 # 0=max diversity, 1=max relevance
)
3. Reranking with Cross-Encoder
from sentence_transformers import CrossEncoder
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# Get initial results
candidates = vectorstore.similarity_search("query", k=20)
# Rerank
pairs = [[query, doc.page_content] for doc in candidates]
scores = reranker.predict(pairs)
# Sort by score and take top k
reranked = sorted(zip(candidates, scores), key=lambda x: x[1], reverse=True)[:5]
Prompt Engineering for RAG
Contextual Prompt
prompt_template = """Use the following context to answer the question. If you cannot answer based on the context, say "I don't have enough information."
Context:
{context}
Question: {question}
Answer:"""
With Citations
prompt_template = """Answer the question based on the context below. Include citations using [1], [2], etc.
Context:
{context}
Question: {question}
Answer (with citations):"""
With Confidence
prompt_template = """Answer the question using the context. Provide a confidence score (0-100%) for your answer.
Context:
{context}
Question: {question}
Answer:
Confidence:"""
Evaluation Metrics
def evaluate_rag_system(qa_chain, test_cases):
metrics = {
'accuracy': [],
'retrieval_quality': [],
'groundedness': []
}
for test in test_cases:
result = qa_chain({"query": test['question']})
# Check if answer matches expected
accuracy = calculate_accuracy(result['result'], test['expected'])
metrics['accuracy'].append(accuracy)
# Check if relevant docs were retrieved
retrieval_quality = evaluate_retrieved_docs(
result['source_documents'],
test['relevant_docs']
)
metrics['retrieval_quality'].append(retrieval_quality)
# Check if answer is grounded in context
groundedness = check_groundedness(
result['result'],
result['source_documents']
)
metrics['groundedness'].append(groundedness)
return {k: sum(v)/len(v) for k, v in metrics.items()}
Resources
- references/vector-databases.md: Detailed comparison of vector DBs
- references/embeddings.md: Embedding model selection guide
- references/retrieval-strategies.md: Advanced retrieval techniques
- references/reranking.md: Reranking methods and when to use them
- references/context-window.md: Managing context limits
- assets/vector-store-config.yaml: Configuration templates
- assets/retriever-pipeline.py: Complete RAG pipeline
- assets/embedding-models.md: Model comparison and benchmarks
Best Practices
- Chunk Size: Balance between context and specificity (500-1000 tokens)
- Overlap: Use 10-20% overlap to preserve context at boundaries
- Metadata: Include source, page, timestamp for filtering and debugging
- Hybrid Search: Combine semantic and keyword search for best results
- Reranking: Improve top results with cross-encoder
- Citations: Always return source documents for transparency
- Evaluation: Continuously test retrieval quality and answer accuracy
- Monitoring: Track retrieval metrics in production
Common Issues
- Poor Retrieval: Check embedding quality, chunk size, query formulation
- Irrelevant Results: Add metadata filtering, use hybrid search, rerank
- Missing Information: Ensure documents are properly indexed
- Slow Queries: Optimize vector store, use caching, reduce k
- Hallucinations: Improve grounding prompt, add verification step
Quick Install
/plugin add https://github.com/camoneart/claude-code/tree/main/rag-implementationCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
llamaguard
OtherLlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
evaluating-llms-harness
TestingThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
