Back to Skills

mamba-architecture

zechenzhangAGI
Updated Today
51 views
62
2
62
View on GitHub
Designdesign

About

Mamba is a state-space model architecture that provides a high-speed alternative to Transformers by achieving O(n) linear complexity instead of O(n²). It enables 5x faster inference, supports million-token sequences, and eliminates the need for a KV cache. Use it for efficient sequence modeling with available models from 130M to 2.8B parameters on HuggingFace.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs
Git CloneAlternative
git clone https://github.com/zechenzhangAGI/AI-research-SKILLs.git ~/.claude/skills/mamba-architecture

Copy and paste this command in Claude Code to install this skill

Documentation

Mamba - Selective State Space Models

Quick start

Mamba is a state-space model architecture achieving O(n) linear complexity for sequence modeling.

Installation:

# Install causal-conv1d (optional, for efficiency)
pip install causal-conv1d>=1.4.0

# Install Mamba
pip install mamba-ssm
# Or both together
pip install mamba-ssm[causal-conv1d]

Prerequisites: Linux, NVIDIA GPU, PyTorch 1.12+, CUDA 11.6+

Basic usage (Mamba block):

import torch
from mamba_ssm import Mamba

batch, length, dim = 2, 64, 16
x = torch.randn(batch, length, dim).to("cuda")

model = Mamba(
    d_model=dim,      # Model dimension
    d_state=16,       # SSM state dimension
    d_conv=4,         # Conv1d kernel size
    expand=2          # Expansion factor
).to("cuda")

y = model(x)  # O(n) complexity!
assert y.shape == x.shape

Common workflows

Workflow 1: Language model with Mamba-2

Complete LM with generation:

from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
from mamba_ssm.models.config_mamba import MambaConfig
import torch

# Configure Mamba-2 LM
config = MambaConfig(
    d_model=1024,           # Hidden dimension
    n_layer=24,             # Number of layers
    vocab_size=50277,       # Vocabulary size
    ssm_cfg=dict(
        layer="Mamba2",     # Use Mamba-2
        d_state=128,        # Larger state for Mamba-2
        headdim=64,         # Head dimension
        ngroups=1           # Number of groups
    )
)

model = MambaLMHeadModel(config, device="cuda", dtype=torch.float16)

# Generate text
input_ids = torch.randint(0, 1000, (1, 20), device="cuda", dtype=torch.long)
output = model.generate(
    input_ids=input_ids,
    max_length=100,
    temperature=0.7,
    top_p=0.9
)

Workflow 2: Use pretrained Mamba models

Load from HuggingFace:

from transformers import AutoTokenizer
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel

# Load pretrained model
model_name = "state-spaces/mamba-2.8b"
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")  # Use compatible tokenizer
model = MambaLMHeadModel.from_pretrained(model_name, device="cuda", dtype=torch.float16)

# Generate
prompt = "The future of AI is"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
output_ids = model.generate(
    input_ids=input_ids,
    max_length=200,
    temperature=0.7,
    top_p=0.9,
    repetition_penalty=1.2
)
generated_text = tokenizer.decode(output_ids[0])
print(generated_text)

Available models:

  • state-spaces/mamba-130m
  • state-spaces/mamba-370m
  • state-spaces/mamba-790m
  • state-spaces/mamba-1.4b
  • state-spaces/mamba-2.8b

Workflow 3: Mamba-1 vs Mamba-2

Mamba-1 (smaller state):

from mamba_ssm import Mamba

model = Mamba(
    d_model=256,
    d_state=16,      # Smaller state dimension
    d_conv=4,
    expand=2
).to("cuda")

Mamba-2 (multi-head, larger state):

from mamba_ssm import Mamba2

model = Mamba2(
    d_model=256,
    d_state=128,     # Larger state dimension
    d_conv=4,
    expand=2,
    headdim=64,      # Head dimension for multi-head
    ngroups=1        # Parallel groups
).to("cuda")

Key differences:

  • State size: Mamba-1 (d_state=16) vs Mamba-2 (d_state=128)
  • Architecture: Mamba-2 has multi-head structure
  • Normalization: Mamba-2 uses RMSNorm
  • Distributed: Mamba-2 supports tensor parallelism

Workflow 4: Benchmark vs Transformers

Generation speed comparison:

# Benchmark Mamba
python benchmarks/benchmark_generation_mamba_simple.py \
  --model-name "state-spaces/mamba-2.8b" \
  --prompt "The future of machine learning is" \
  --topp 0.9 --temperature 0.7 --repetition-penalty 1.2

# Benchmark Transformer
python benchmarks/benchmark_generation_mamba_simple.py \
  --model-name "EleutherAI/pythia-2.8b" \
  --prompt "The future of machine learning is" \
  --topp 0.9 --temperature 0.7 --repetition-penalty 1.2

Expected results:

  • Mamba: 5× faster inference
  • Memory: No KV cache needed
  • Scaling: Linear with sequence length

When to use vs alternatives

Use Mamba when:

  • Need long sequences (100K+ tokens)
  • Want faster inference than Transformers
  • Memory-constrained (no KV cache)
  • Building streaming applications
  • Linear scaling important

Advantages:

  • O(n) complexity: Linear vs quadratic
  • 5× faster inference: No attention overhead
  • No KV cache: Lower memory usage
  • Million-token sequences: Hardware-efficient
  • Streaming: Constant memory per token

Use alternatives instead:

  • Transformers: Need best-in-class performance, have compute
  • RWKV: Want RNN+Transformer hybrid
  • RetNet: Need retention-based architecture
  • Hyena: Want convolution-based approach

Common issues

Issue: CUDA out of memory

Reduce batch size or use gradient checkpointing:

model = MambaLMHeadModel(config, device="cuda", dtype=torch.float16)
model.gradient_checkpointing_enable()  # Enable checkpointing

Issue: Slow installation

Install binary wheels (not source):

pip install mamba-ssm --no-build-isolation

Issue: Missing causal-conv1d

Install separately:

pip install causal-conv1d>=1.4.0

Issue: Model not loading from HuggingFace

Use MambaLMHeadModel.from_pretrained (not AutoModel):

from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
model = MambaLMHeadModel.from_pretrained("state-spaces/mamba-2.8b")

Advanced topics

Selective SSM: See references/selective-ssm.md for mathematical formulation, state-space equations, and how selectivity enables O(n) complexity.

Mamba-2 architecture: See references/mamba2-details.md for multi-head structure, tensor parallelism, and distributed training setup.

Performance optimization: See references/performance.md for hardware-aware design, CUDA kernels, and memory efficiency techniques.

Hardware requirements

  • GPU: NVIDIA with CUDA 11.6+
  • VRAM:
    • 130M model: 2GB
    • 370M model: 4GB
    • 790M model: 8GB
    • 1.4B model: 14GB
    • 2.8B model: 28GB (FP16)
  • Inference: 5× faster than Transformers
  • Memory: No KV cache (lower than Transformers)

Performance (vs Transformers):

  • Speed: 5× faster inference
  • Memory: 50% less (no KV cache)
  • Scaling: Linear vs quadratic

Resources

GitHub Repository

zechenzhangAGI/AI-research-SKILLs
Path: 01-model-architecture/mamba
aiai-researchclaudeclaude-codeclaude-skillscodex

Related Skills

content-collections

Meta

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

View skill

langchain

Meta

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

View skill

Algorithmic Art Generation

Meta

This skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.

View skill

webapp-testing

Testing

This Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.

View skill