Neural Network Design
About
This Claude Skill helps developers design and architect neural networks using popular frameworks like PyTorch and TensorFlow. It supports various architectures including CNNs, RNNs, and Transformers for tasks like image classification and sequence processing. Use this skill when you need to implement core design principles such as skip connections, normalization, and regularization for building effective models.
Documentation
Neural Network Design
Designing neural networks requires understanding different architectures, layer types, and how to combine them for specific tasks like image classification, sequence processing, and language understanding.
Core Architecture Types
- Feedforward Networks (MLPs): Fully connected layers
- Convolutional Networks (CNNs): Image processing
- Recurrent Networks (RNNs, LSTMs, GRUs): Sequence processing
- Transformers: Self-attention based architecture
- Hybrid Models: Combining multiple architecture types
Network Design Principles
- Depth vs Width: Trade-offs between layers and units
- Skip Connections: Residual networks for deeper training
- Normalization: Batch norm, layer norm for stability
- Regularization: Dropout, L1/L2 preventing overfitting
- Activation Functions: ReLU, GELU, Swish for non-linearity
PyTorch and TensorFlow Implementation
import torch
import torch.nn as nn
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
# 1. Feedforward Neural Network (MLP)
print("=== 1. Feedforward Neural Network ===")
class MLPPyTorch(nn.Module):
def __init__(self, input_size, hidden_sizes, output_size):
super().__init__()
layers = []
prev_size = input_size
for hidden_size in hidden_sizes:
layers.append(nn.Linear(prev_size, hidden_size))
layers.append(nn.BatchNorm1d(hidden_size))
layers.append(nn.ReLU())
layers.append(nn.Dropout(0.3))
prev_size = hidden_size
layers.append(nn.Linear(prev_size, output_size))
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
mlp = MLPPyTorch(input_size=784, hidden_sizes=[512, 256, 128], output_size=10)
print(f"MLP Parameters: {sum(p.numel() for p in mlp.parameters()):,}")
# 2. Convolutional Neural Network (CNN)
print("\n=== 2. Convolutional Neural Network ===")
class CNNPyTorch(nn.Module):
def __init__(self):
super().__init__()
# Conv blocks
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.pool2 = nn.MaxPool2d(2, 2)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(128)
self.pool3 = nn.MaxPool2d(2, 2)
# Fully connected layers
self.fc1 = nn.Linear(128 * 4 * 4, 256)
self.dropout = nn.Dropout(0.5)
self.fc2 = nn.Linear(256, 10)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.bn1(self.conv1(x)))
x = self.pool1(x)
x = self.relu(self.bn2(self.conv2(x)))
x = self.pool2(x)
x = self.relu(self.bn3(self.conv3(x)))
x = self.pool3(x)
x = x.view(x.size(0), -1)
x = self.relu(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return x
cnn = CNNPyTorch()
print(f"CNN Parameters: {sum(p.numel() for p in cnn.parameters()):,}")
# 3. Recurrent Neural Network (LSTM)
print("\n=== 3. LSTM Network ===")
class LSTMPyTorch(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super().__init__()
self.lstm = nn.LSTM(input_size, hidden_size, num_layers,
batch_first=True, dropout=0.3)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
lstm_out, (h_n, c_n) = self.lstm(x)
last_hidden = h_n[-1]
output = self.fc(last_hidden)
return output
lstm = LSTMPyTorch(input_size=100, hidden_size=128, num_layers=2, output_size=10)
print(f"LSTM Parameters: {sum(p.numel() for p in lstm.parameters()):,}")
# 4. Transformer Block
print("\n=== 4. Transformer Architecture ===")
class TransformerBlock(nn.Module):
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
super().__init__()
self.attention = nn.MultiheadAttention(d_model, num_heads, dropout=dropout)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.feedforward = nn.Sequential(
nn.Linear(d_model, d_ff),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(d_ff, d_model),
nn.Dropout(dropout)
)
def forward(self, x):
# Self-attention
attn_out, _ = self.attention(x, x, x)
x = self.norm1(x + attn_out)
# Feedforward
ff_out = self.feedforward(x)
x = self.norm2(x + ff_out)
return x
class TransformerPyTorch(nn.Module):
def __init__(self, vocab_size, d_model, num_heads, num_layers, d_ff):
super().__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.transformer_blocks = nn.ModuleList([
TransformerBlock(d_model, num_heads, d_ff)
for _ in range(num_layers)
])
self.fc = nn.Linear(d_model, 10)
def forward(self, x):
x = self.embedding(x)
for block in self.transformer_blocks:
x = block(x)
x = x.mean(dim=1) # Global average pooling
x = self.fc(x)
return x
transformer = TransformerPyTorch(vocab_size=1000, d_model=256, num_heads=8,
num_layers=3, d_ff=512)
print(f"Transformer Parameters: {sum(p.numel() for p in transformer.parameters()):,}")
# 5. Residual Network (ResNet)
print("\n=== 5. Residual Network ===")
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, 3, stride=stride, padding=1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, 3, padding=1)
self.bn2 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU()
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1, stride=stride),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
residual = self.shortcut(x)
out = self.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += residual
out = self.relu(out)
return out
class ResNetPyTorch(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 64, 7, stride=2, padding=3)
self.bn1 = nn.BatchNorm2d(64)
self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 64, 3, stride=1)
self.layer2 = self._make_layer(64, 128, 4, stride=2)
self.layer3 = self._make_layer(128, 256, 6, stride=2)
self.layer4 = self._make_layer(256, 512, 3, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, 10)
def _make_layer(self, in_channels, out_channels, blocks, stride):
layers = [ResidualBlock(in_channels, out_channels, stride)]
for _ in range(1, blocks):
layers.append(ResidualBlock(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.maxpool(self.bn1(self.conv1(x)))
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
resnet = ResNetPyTorch()
print(f"ResNet Parameters: {sum(p.numel() for p in resnet.parameters()):,}")
# 6. TensorFlow Keras model with custom layers
print("\n=== 6. TensorFlow Keras Model ===")
tf_model = keras.Sequential([
keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
keras.layers.BatchNormalization(),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Conv2D(64, (3, 3), activation='relu'),
keras.layers.BatchNormalization(),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Conv2D(128, (3, 3), activation='relu'),
keras.layers.BatchNormalization(),
keras.layers.GlobalAveragePooling2D(),
keras.layers.Dense(256, activation='relu'),
keras.layers.Dropout(0.5),
keras.layers.Dense(10, activation='softmax')
])
print(f"TensorFlow Model Parameters: {tf_model.count_params():,}")
tf_model.summary()
# 7. Model comparison
models_info = {
'MLP': mlp,
'CNN': cnn,
'LSTM': lstm,
'Transformer': transformer,
'ResNet': resnet,
}
param_counts = {name: sum(p.numel() for p in model.parameters())
for name, model in models_info.items()}
fig, axes = plt.subplots(1, 2, figsize=(14, 5))
# Parameter counts
axes[0].barh(list(param_counts.keys()), list(param_counts.values()), color='steelblue')
axes[0].set_xlabel('Number of Parameters')
axes[0].set_title('Model Complexity Comparison')
axes[0].set_xscale('log')
# Architecture comparison table
architectures = {
'MLP': 'Feedforward, Dense layers',
'CNN': 'Conv layers, Pooling',
'LSTM': 'Recurrent, Long-term memory',
'Transformer': 'Self-attention, Parallel processing',
'ResNet': 'Residual connections, Skip paths'
}
y_pos = np.arange(len(architectures))
axes[1].axis('off')
table_data = [[name, architectures[name]] for name in architectures.keys()]
table = axes[1].table(cellText=table_data, colLabels=['Model', 'Architecture'],
cellLoc='left', loc='center', bbox=[0, 0, 1, 1])
table.auto_set_font_size(False)
table.set_fontsize(9)
table.scale(1, 2)
plt.tight_layout()
plt.savefig('neural_network_architectures.png', dpi=100, bbox_inches='tight')
print("\nVisualization saved as 'neural_network_architectures.png'")
print("\nNeural network design analysis complete!")
Architecture Selection Guide
- MLP: Tabular data, simple classification
- CNN: Image classification, object detection
- LSTM/GRU: Time series, sequential data
- Transformer: NLP, long-range dependencies
- ResNet: Very deep networks, image tasks
Key Design Considerations
- Input/output shape compatibility
- Receptive field size for CNNs
- Sequence length for RNNs
- Attention head count for Transformers
- Skip connection placement for ResNets
Deliverables
- Network architecture definition
- Parameter count analysis
- Layer-by-layer description
- Data flow diagrams
- Performance benchmarks
- Deployment requirements
Quick Install
/plugin add https://github.com/aj-geddes/useful-ai-prompts/tree/main/neural-network-designCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
Algorithmic Art Generation
MetaThis skill helps developers create algorithmic art using p5.js, focusing on generative art, computational aesthetics, and interactive visualizations. It automatically activates for topics like "generative art" or "p5.js visualization" and guides you through creating unique algorithms with features like seeded randomness, flow fields, and particle systems. Use it when you need to build reproducible, code-driven artistic patterns.
webapp-testing
TestingThis Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.
requesting-code-review
DesignThis skill dispatches a code-reviewer subagent to analyze code changes against requirements before proceeding. It should be used after completing tasks, implementing major features, or before merging to main. The review helps catch issues early by comparing the current implementation with the original plan.
