doc-fetcher
About
The doc-fetcher skill fetches comprehensive, version-specific library and framework documentation using context7-mcp and fetch-mcp integrations. It enables developers to retrieve up-to-date API references, guides, and best practices for informed implementation decisions. Use this skill when you need current documentation from multiple sources during research or development.
Documentation
Purpose
The doc-fetcher skill provides comprehensive capabilities for fetching library and framework documentation from multiple sources using MCP integrations. This skill helps the Documentation Researcher agent retrieve up-to-date, version-specific documentation that enables informed implementation decisions and adherence to library best practices.
This skill emphasizes:
- Latest Documentation: Always fetch current, version-specific documentation
- Multiple Sources: Leverage both context7-mcp (deep context) and fetch-mcp (web content)
- Comprehensive Coverage: Retrieve API references, examples, guides, and best practices
- Version Awareness: Track version compatibility and breaking changes
- Efficient Retrieval: Optimize MCP usage for token efficiency and accuracy
The doc-fetcher skill ensures that implementation guidance is based on authoritative, current documentation from official sources.
When to Use
This skill auto-activates when the agent describes:
- "Fetch documentation for..."
- "Retrieve API reference for..."
- "Get library documentation..."
- "Access documentation for..."
- "Find documentation about..."
- "Retrieve latest docs for..."
- "Look up documentation..."
- "Fetch API docs from..."
Provided Capabilities
1. Context7-MCP Documentation Retrieval
What it provides:
- Deep documentation retrieval with semantic search
- Version-specific API references
- Code examples from documentation
- Library-specific patterns and conventions
- Integration guidance
Context7 Workflow:
# Step 1: Resolve library name to context7 ID
library_id = invoke_mcp(
"context7-mcp",
tool="resolve-library-id",
params={
"libraryName": "fastapi" # or "react", "django", etc.
}
)
# Step 2: Fetch comprehensive documentation
docs = invoke_mcp(
"context7-mcp",
tool="get-library-docs",
params={
"context7CompatibleLibraryID": library_id["library_id"], # e.g., "/tiangolo/fastapi"
"topic": "API routing and dependency injection", # Focus area
"tokens": 3000 # Amount of documentation to retrieve
}
)
# Result contains:
# - documentation: Markdown-formatted docs
# - version: Library version
# - examples: Code examples
# - metadata: Additional context
Context7 Best Practices:
- Use specific topics to focus documentation retrieval
- Start with 2000-3000 tokens for comprehensive coverage
- Adjust token count based on complexity
- Combine multiple focused queries for complex features
2. Fetch-MCP Web Content Retrieval
What it provides:
- Official documentation page fetching
- GitHub README and Wiki retrieval
- Community resource access
- Tutorial and guide retrieval
- Changelog and migration guide access
Fetch-MCP Workflow:
# Fetch official documentation page
official_docs = invoke_mcp(
"fetch-mcp",
tool="fetch",
params={
"url": "https://fastapi.tiangolo.com/tutorial/first-steps/",
"prompt": "Extract quick start guide, installation steps, and first API example"
}
)
# Fetch GitHub README
github_readme = invoke_mcp(
"fetch-mcp",
tool="fetch",
params={
"url": "https://github.com/tiangolo/fastapi/blob/master/README.md",
"prompt": "Extract key features, installation, and basic usage examples"
}
)
# Result contains:
# - Extracted content focused on the prompt
# - Markdown-formatted for easy parsing
# - Cleaned and processed for relevance
Fetch-MCP Best Practices:
- Use specific prompts to extract relevant content
- Prefer official documentation URLs over third-party
- Fetch READMEs for overview and quick start
- Retrieve changelogs for version migration info
3. Multi-Source Documentation Strategy
What it provides:
- Combined documentation from multiple sources
- Cross-reference validation
- Comprehensive coverage
- Authoritative source prioritization
Multi-Source Workflow:
documentation_sources = {
"primary": {
# Context7: Deep, comprehensive docs
"context7": fetch_via_context7(library_name, topic),
# Official docs: Quick start and guides
"official": fetch_via_fetch_mcp(official_docs_url),
},
"supplementary": {
# GitHub: Latest examples and README
"github": fetch_via_fetch_mcp(github_url),
# Migration guides (if version upgrade)
"migration": fetch_via_fetch_mcp(migration_guide_url) if needs_migration else None,
}
}
# Synthesize documentation from multiple sources
synthesized_docs = synthesize_documentation(documentation_sources)
Source Prioritization:
- Official Documentation (highest priority)
- Context7 Documentation (comprehensive reference)
- GitHub Repository (latest examples)
- Community Resources (supplementary)
4. Version-Specific Retrieval
What it provides:
- Version compatibility checking
- Breaking change identification
- Migration guidance
- Deprecated feature detection
Version Handling:
# Specify version in context7 (if supported)
docs_v2 = invoke_mcp(
"context7-mcp",
tool="get-library-docs",
params={
"context7CompatibleLibraryID": "/tiangolo/fastapi/v0.100.0", # Version-specific
"topic": "API routing",
"tokens": 2000
}
)
# Fetch version-specific changelog
changelog = invoke_mcp(
"fetch-mcp",
tool="fetch",
params={
"url": "https://github.com/tiangolo/fastapi/blob/master/CHANGELOG.md",
"prompt": "Extract changes between version 0.95.0 and 0.100.0, focusing on breaking changes"
}
)
# Compare versions and identify migration needs
migration_notes = analyze_version_changes(changelog)
5. Code Example Extraction
What it provides:
- Working code examples
- Integration patterns
- Configuration examples
- Test examples
Example Extraction:
# Extract examples from context7 docs
examples = []
for code_block in docs["examples"]:
examples.append({
"code": code_block["code"],
"language": code_block["language"],
"description": code_block["description"],
"category": categorize_example(code_block)
})
# Extract examples from official docs
official_examples = extract_code_blocks(official_docs["content"], language="python")
# Combine and deduplicate
all_examples = deduplicate_examples(examples + official_examples)
6. Documentation Caching
What it provides:
- Reduced MCP calls
- Faster subsequent retrievals
- Token usage optimization
- Consistent documentation state
Caching Strategy:
# Check cache before fetching
cache_key = f"{library_name}:{version}:{topic_hash}"
if cache_key in documentation_cache:
return documentation_cache[cache_key]
# Fetch and cache
docs = fetch_documentation(library_name, version, topic)
documentation_cache[cache_key] = docs
documentation_cache[cache_key]["cached_at"] = datetime.utcnow()
return docs
Cache Invalidation:
- Expire after 24 hours
- Clear on version change
- Manual refresh option
Usage Guide
Step 1: Identify Documentation Needs
Analysis doc → Extract libraries → Identify topics → Prioritize sources
Step 2: Resolve Library IDs (context7)
Library name → context7 resolve-library-id → Library ID
Step 3: Fetch Context7 Documentation
Library ID + Topic → get-library-docs → Comprehensive docs
Step 4: Fetch Web Resources (fetch-mcp)
URLs + Prompts → fetch → Supplementary docs
Step 5: Extract Examples
Documentation → Code blocks → Categorized examples
Step 6: Synthesize Documentation
Multiple sources → Prioritize → Combine → Structured output
Best Practices
-
Use Context7 for Depth
- Primary source for API references
- Comprehensive coverage of library features
- Semantic search capabilities
- Version-specific support
-
Use Fetch-MCP for Breadth
- Official quick start guides
- GitHub examples and READMEs
- Migration guides and changelogs
- Community tutorials (verified sources)
-
Focus Documentation Retrieval
- Use specific topics in context7
- Use targeted prompts in fetch-mcp
- Avoid generic "get all documentation"
- Retrieve only what's needed for feature
-
Version Awareness
- Always specify version requirements
- Check for breaking changes
- Document version compatibility
- Provide migration notes if needed
-
Token Optimization
- Start with 2000-3000 tokens
- Adjust based on complexity
- Multiple focused queries > one large query
- Cache frequently accessed docs
-
Source Validation
- Prefer official documentation
- Verify URL authenticity
- Check documentation date
- Cross-reference when uncertain
Resources
doc-sources.md
Curated list of documentation sources:
- Official documentation URLs by framework
- GitHub repository locations
- Community resource repositories
- API reference locations
- Tutorial and guide sources
- Changelog and release note locations
fetching-strategies.md
Documentation fetching strategies:
- When to use context7 vs fetch-mcp
- Token optimization techniques
- Version-specific retrieval
- Caching strategies
- Error handling patterns
- Multi-source synthesis
- Example extraction methods
Example Usage
Input (from Documentation Researcher agent):
"Fetch documentation for FastAPI framework focusing on API routing, dependency injection, and Pydantic integration."
Output (doc-fetcher skill provides):
# Comprehensive documentation retrieval
# 1. Context7 Documentation
fastapi_docs = {
"library_id": "/tiangolo/fastapi",
"version": "0.100.0",
"documentation": """
# FastAPI API Routing
FastAPI provides a powerful routing system based on Python type hints...
## Dependency Injection
FastAPI's dependency injection system allows you to declare dependencies...
## Pydantic Integration
FastAPI uses Pydantic models for request validation...
""",
"examples": [
{
"title": "Basic API with dependency injection",
"code": """
from fastapi import FastAPI, Depends
app = FastAPI()
def get_query_param(q: str = None):
return {"q": q}
@app.get("/items/")
async def read_items(commons: dict = Depends(get_query_param)):
return commons
""",
"language": "python"
}
]
}
# 2. Official Documentation (fetch-mcp)
official_docs = {
"url": "https://fastapi.tiangolo.com/tutorial/",
"content": """
# First Steps
Create a file `main.py` with:
```python
from fastapi import FastAPI
app = FastAPI()
@app.get("/")
async def root():
return {"message": "Hello World"}
```
Run the server with: `uvicorn main:app --reload`
"""
}
# 3. GitHub README (fetch-mcp)
github_readme = {
"url": "https://github.com/tiangolo/fastapi",
"content": """
# FastAPI
FastAPI framework, high performance, easy to learn, fast to code, ready for production
## Key features:
- Fast: Very high performance, on par with NodeJS and Go
- Fast to code: Increase the speed to develop features by about 200% to 300%
- Fewer bugs: Reduce about 40% of human errors
- Intuitive: Great editor support
- Easy: Designed to be easy to use and learn
- Short: Minimize code duplication
- Robust: Get production-ready code
- Standards-based: Based on OpenAPI and JSON Schema
"""
}
# 4. Synthesized Output
{
"library": "fastapi",
"version": "0.100.0",
"sources": {
"context7": "Primary documentation source",
"official": "Quick start and tutorials",
"github": "Overview and features"
},
"api_routing": {
"overview": "FastAPI provides decorator-based routing...",
"examples": [...],
"best_practices": [...]
},
"dependency_injection": {
"overview": "Dependency injection via Depends()...",
"examples": [...],
"best_practices": [...]
},
"pydantic_integration": {
"overview": "Pydantic models for validation...",
"examples": [...],
"best_practices": [...]
},
"version_notes": "Compatible with Pydantic v2.x"
}
Integration
Used By:
- @documentation-researcher (Primary) - Phase 2 sub-agent for documentation research
Integrates With:
- doc-analyzer skill - Fetched documentation is analyzed for patterns and best practices
- context7-mcp - Primary documentation retrieval mechanism
- fetch-mcp - Supplementary web content retrieval
Workflow Position:
- Analysis Specialist identifies technical stack requirements
- Documentation Researcher receives analysis
- doc-fetcher skill retrieves documentation (Step 3-4)
- doc-analyzer skill analyzes documentation (Step 5-6)
- Results synthesized into documentation summary
- Design Orchestrator includes in PRP
Version: 2.0.0 Auto-Activation: Yes Phase: 2 - Design & Planning Created: 2025-10-29
Quick Install
/plugin add https://github.com/matteocervelli/llms/tree/main/doc-fetcherCopy and paste this command in Claude Code to install this skill
GitHub 仓库
Related Skills
llamaindex
MetaLlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.
canvas-design
MetaThe canvas-design skill generates original visual art in PNG and PDF formats for creating posters, designs, and other static artwork. It operates through a two-step process: first creating a design philosophy document, then visually expressing it on a canvas. The skill focuses on original compositions using form, color, and space while avoiding copyright infringement by never copying existing artists' work.
go-test
MetaThe go-test skill provides expertise in Go's standard testing package and best practices. It helps developers implement table-driven tests, subtests, benchmarks, and coverage strategies while following Go conventions. Use it when writing test files, creating mocks, detecting race conditions, or organizing integration tests in Go projects.
business-rule-documentation
MetaThis skill provides standardized templates for systematically documenting business logic and domain knowledge following Domain-Driven Design principles. It helps developers capture business rules, process flows, decision trees, and terminology glossaries to maintain consistency between requirements and implementation. Use it when documenting domain models, creating business rule repositories, or bridging communication between business and technical teams.
