development-assistant
について
このClaudeスキルは、Claude Patent Creatorシステムの拡張、特に新しいMCPツール、アナライザー、機能の追加に関する専門的なガイダンスを提供します。コード実装、検証、テスト、ドキュメンテーションのための構造化されたワークフローとベストプラクティスを提供します。開発者は、システム内でのMCP統合、設定オプション、パフォーマンス最適化に取り組む際にこれを利用すべきです。
クイックインストール
Claude Code
推奨/plugin add https://github.com/RobThePCGuy/Claude-Patent-Creatorgit clone https://github.com/RobThePCGuy/Claude-Patent-Creator.git ~/.claude/skills/development-assistantこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Development Assistant Skill
Expert system for developing and extending the Claude Patent Creator. Guides through adding new MCP tools, analyzers, configuration options, and features while following best practices and existing patterns.
When to Use This Skill
Activate when adding MCP tools, analyzers, configuration options, BigQuery queries, slash commands, or implementing performance optimizations.
Development Workflow
Feature Request -> Planning -> Implementation (Code + Validation + Monitoring + Tests) -> Testing -> Documentation -> Integration
Adding New MCP Tools
Quick Start:
- Define inputs, outputs, dependencies
- Create Pydantic model in
mcp_server/validation.py - Add tool function in
mcp_server/server.pywith decorators - Create test script in
scripts/ - Update CLAUDE.md
Key Decorators:
@mcp.tool() # Register as MCP tool
@validate_input(YourInput) # Pydantic validation
@track_performance # Performance monitoring
Template:
def your_tool(param: str, optional: int = 10) -> dict:
"""Comprehensive docstring (Claude sees this).
Args:
param: Description
optional: Description with default
Returns:
Dictionary containing: key1, key2, key3
"""
# Implementation
return {"result": "data"}
Adding New Analyzers
Overview: Analyzers inherit from BaseAnalyzer and check USPTO compliance.
Minimal Example:
from mcp_server.analyzer_base import BaseAnalyzer
class YourAnalyzer(BaseAnalyzer):
def __init__(self):
super().__init__()
self.mpep_sections = ["608", "2173"]
def analyze(self, content: str) -> dict:
issues = []
if violation:
issues.append({
"type": "violation_name",
"severity": "critical",
"mpep_citation": "MPEP 608",
"recommendation": "Fix description"
})
return {"compliant": len(issues) == 0, "issues": issues}
Adding Configuration Options
Use Pydantic settings in mcp_server/config.py:
# In config.py
class AppSettings(BaseSettings):
enable_feature_x: bool = Field(default=False, description="Enable X")
# In your code
from mcp_server.config import get_settings
if get_settings().enable_feature_x:
# Feature enabled
Adding Performance Monitoring
@track_performance
def your_function(data):
with OperationTimer("step1"):
result1 = step1(data)
with OperationTimer("step2"):
result2 = step2(result1)
return result2
Modifying RAG Search Pipeline
Pipeline: Query -> HyDE -> Vector+BM25 -> RRF -> Reranking -> Results
Customization Points: Query expansion, custom scoring, filtering, reranking strategies
Adding New Slash Commands
- Create
.claude/commands/your-command.md - Add frontmatter:
description,model - Write workflow instructions
- Restart Claude Code
Template:
---
description: Brief command description
model: claude-sonnet-4-5-20250929
---
# Command Name
## When to Use
- Use case 1
## How It Works
Step 1: ...
Development Best Practices
- Follow existing patterns
- Use type hints
- Write docstrings (Google style)
- Handle errors gracefully
- Validate inputs (Pydantic)
- Log operations
- Monitor performance
Common Development Tasks
Add BigQuery Query: Add method in mcp_server/bigquery_search.py
Add Validation Rule:
class YourInput(BaseModel):
field: str
@field_validator("field")
@classmethod
def validate_field(cls, v):
if not meets_requirement(v):
raise ValueError("Error message")
return v
Add Logging:
from mcp_server.logging_config import get_logger
logger = get_logger()
logger.info("event_name", extra={"context": "data"})
Quick Reference: File Locations
| Task | Primary File | Related Files |
|---|---|---|
| Add MCP tool | mcp_server/server.py | mcp_server/validation.py |
| Add analyzer | mcp_server/your_analyzer.py | mcp_server/analyzer_base.py |
| Add config | mcp_server/config.py | .env, CLAUDE.md |
| Add BigQuery query | mcp_server/bigquery_search.py | - |
| Add test | scripts/test_your_feature.py | - |
Key Patterns
MCP Tool Pattern:
@mcp.tool()
@validate_input(InputModel)
@track_performance
def tool_name(param: type) -> dict:
"""Docstring visible to Claude."""
from module import Component
if invalid:
return {"error": "message"}
result = process(param)
return {"key": "value"}
Analyzer Pattern:
class YourAnalyzer(BaseAnalyzer):
def analyze(self, content: str) -> dict:
issues = []
issues.extend(self._check_x(content))
return {
"compliant": len(issues) == 0,
"issues": issues,
"recommendations": self._generate_recommendations(issues)
}
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
polymarket
メタThis skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.
cloudflare-turnstile
メタThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
