MCP HubMCP Hub
スキル一覧に戻る

detecting-data-anomalies

jeremylongshore
更新日 Today
107 閲覧
712
74
712
GitHubで表示
その他data

について

このスキルは、scikit-learnなどの機械学習アルゴリズムを用いてデータセット内の異常値や外れ値を検出します。通常の挙動から逸脱した異常なパターンや予期しない変動をデータ分析で見つけたい場合にご利用ください。「異常を検出して」などのフレーズで起動され、CSVやJSONなどの形式で準備されたデータセットが必要です。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git クローン代替
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/detecting-data-anomalies

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Prerequisites

Before using this skill, ensure you have:

  • Dataset in accessible format (CSV, JSON, or database)
  • Python environment with scikit-learn or similar ML libraries
  • Understanding of data distribution and expected patterns
  • Sufficient data volume for statistical significance
  • Knowledge of domain-specific normal behavior
  • Data preprocessing capabilities for cleaning and scaling

Instructions

Step 1: Prepare Data for Analysis

Set up the dataset for anomaly detection:

  1. Load dataset using Read tool
  2. Inspect data structure and identify relevant features
  3. Clean data by handling missing values and inconsistencies
  4. Normalize or scale features as appropriate for algorithm
  5. Split temporal data if time-series analysis is needed

Step 2: Select Detection Algorithm

Choose appropriate anomaly detection method based on data characteristics:

  • Isolation Forest: For high-dimensional data with complex anomalies
  • One-Class SVM: For clearly defined normal behavior patterns
  • Local Outlier Factor (LOF): For density-based anomaly detection
  • Statistical Methods: For simple univariate or multivariate analysis
  • Autoencoders: For complex patterns in large datasets

Step 3: Configure Detection Parameters

Set algorithm parameters to balance sensitivity:

  • Define contamination rate (expected proportion of anomalies)
  • Set distance metrics appropriate for feature types
  • Configure threshold values for anomaly scoring
  • Establish validation strategy for parameter tuning

Step 4: Execute Anomaly Detection

Run the detection algorithm on prepared data:

  1. Apply selected algorithm using Bash tool
  2. Generate anomaly scores for each data point
  3. Classify points as normal or anomalous based on threshold
  4. Extract characteristics of identified anomalies

Step 5: Analyze and Report Results

Interpret detection results and provide insights:

  • Summarize number and distribution of anomalies
  • Highlight most significant outliers with context
  • Identify patterns or clusters among anomalies
  • Generate visualizations showing anomaly distribution
  • Provide recommendations for further investigation

Output

The skill produces comprehensive anomaly detection results:

Anomaly Summary Report

  • Total data points analyzed
  • Number of anomalies detected
  • Contamination rate (percentage of anomalies)
  • Algorithm used and configuration parameters
  • Confidence scores for detected anomalies

Detailed Anomaly List

For each detected anomaly:

  • Record identifier and timestamp (if applicable)
  • Anomaly score and confidence level
  • Feature values showing deviation from normal
  • Contextual information about the outlier
  • Severity classification (low, medium, high, critical)

Statistical Analysis

  • Distribution of anomaly scores across dataset
  • Feature importance for anomaly classification
  • Comparison with normal data patterns
  • Temporal distribution of anomalies (if time-series)
  • Clustering analysis of anomaly types

Visualizations

  • Scatter plots highlighting anomalies in feature space
  • Time-series plots with anomaly markers
  • Distribution histograms comparing normal vs anomalous data
  • Heatmaps showing feature correlations for anomalies

Recommendations

  • Suggested follow-up investigations for critical anomalies
  • Data quality improvements to reduce false positives
  • Monitoring strategies for real-time detection
  • Algorithm refinements based on domain knowledge

Error Handling

Common issues and solutions:

Insufficient Data Volume

  • Error: Not enough data points for statistical significance
  • Solution: Collect more data, adjust contamination rate, or use simpler statistical methods

High False Positive Rate

  • Error: Too many normal points classified as anomalies
  • Solution: Adjust detection threshold, refine feature selection, or use domain-specific constraints

Algorithm Performance Issues

  • Error: Detection algorithm too slow for large datasets
  • Solution: Use sampling techniques, optimize parameters, or switch to faster algorithms like Isolation Forest

Feature Scaling Problems

  • Error: Anomalies dominated by high-magnitude features
  • Solution: Apply appropriate normalization or standardization to all features before detection

Missing Ground Truth

  • Error: Unable to validate detection accuracy without labels
  • Solution: Use domain expertise for manual validation, implement feedback loop for model improvement

Resources

Anomaly Detection Algorithms

  • Isolation Forest documentation and implementation examples
  • One-Class SVM for novelty detection
  • Local Outlier Factor (LOF) for density-based detection
  • Autoencoder-based anomaly detection for deep learning approaches

Python Libraries

  • scikit-learn anomaly detection module
  • PyOD (Python Outlier Detection) comprehensive library
  • TensorFlow/PyTorch for deep learning-based detection
  • statsmodels for statistical anomaly detection

Domain-Specific Applications

  • Fraud detection in financial transactions
  • Network intrusion detection and security monitoring
  • Manufacturing quality control and defect detection
  • Healthcare anomaly detection for patient monitoring
  • IoT sensor data anomaly identification

Best Practices

  • Balance sensitivity to avoid excessive false positives
  • Validate results with domain experts
  • Monitor detection performance over time
  • Update models as normal behavior evolves
  • Document anomaly investigation procedures

GitHub リポジトリ

jeremylongshore/claude-code-plugins-plus
パス: plugins/ai-ml/anomaly-detection-system/skills/anomaly-detection-system
aiautomationclaude-codedevopsmarketplacemcp

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る

hybrid-cloud-networking

メタ

This skill configures secure hybrid cloud networking between on-premises infrastructure and cloud platforms like AWS, Azure, and GCP. Use it when connecting data centers to the cloud, building hybrid architectures, or implementing secure cross-premises connectivity. It supports key capabilities such as VPNs and dedicated connections like AWS Direct Connect for high-performance, reliable setups.

スキルを見る

llamaindex

メタ

LlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.

スキルを見る