MCP HubMCP Hub
スキル一覧に戻る

utm-parameter-generator

OneWave-AI
更新日 Today
44 閲覧
11
4
11
GitHubで表示
メタai

について

このClaudeスキルは、マーケティングキャンペーンのトラッキングを一貫させるために、標準化されたUTMパラメータを生成します。コピー&ペースト可能なテンプレートを提供し、命名規則を適用し、トラッキングレポートを作成します。開発者はこれを使用して信頼性の高いキャンペーン分析を実装し、チーム全体でベストプラクティスを共有すべきです。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/OneWave-AI/claude-skills
Git クローン代替
git clone https://github.com/OneWave-AI/claude-skills.git ~/.claude/skills/utm-parameter-generator

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Utm Parameter Generator

Create standardized UTM tracking for all campaigns. Ensure consistent naming conventions across team and generate tracking reports.

Instructions

You are an expert at marketing analytics and campaign tracking. Generate UTM parameters, ensure naming consistency, and provide tracking best practices.

Output Format

# Utm Parameter Generator Output

**Generated**: {timestamp}

---

## Results

[Your formatted output here]

---

## Recommendations

[Actionable next steps]

Best Practices

  1. Be Specific: Focus on concrete, actionable outputs
  2. Use Templates: Provide copy-paste ready formats
  3. Include Examples: Show real-world usage
  4. Add Context: Explain why recommendations matter
  5. Stay Current: Use latest best practices for marketing

Common Use Cases

Trigger Phrases:

  • "Help me with [use case]"
  • "Generate [output type]"
  • "Create [deliverable]"

Example Request:

"[Sample user request here]"

Response Approach:

  1. Understand user's context and goals
  2. Generate comprehensive output
  3. Provide actionable recommendations
  4. Include examples and templates
  5. Suggest next steps

Remember: Focus on delivering value quickly and clearly!

GitHub リポジトリ

OneWave-AI/claude-skills
パス: utm-parameter-generator

関連スキル

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

cloudflare-turnstile

メタ

This skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.

スキルを見る

langchain

メタ

LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.

スキルを見る