MCP HubMCP Hub
スキル一覧に戻る

optimizing-cache-performance

jeremylongshore
更新日 Today
46 閲覧
712
74
712
GitHubで表示
メタaidesign

について

このスキルは、キャッシュヒット率、TTL設定、無効化戦略を分析・改善することで、開発者がアプリケーションのキャッシュ戦略を最適化するのに役立ちます。コードベースにおけるキャッシュ関連のパフォーマンス問題を診断・解決する必要がある場合にご利用ください。キャッシュ実装の特定、設定の調査、具体的な最適化の提案を通じて機能します。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git クローン代替
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/optimizing-cache-performance

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Overview

This skill empowers Claude to diagnose and resolve caching-related performance issues. It guides users through a comprehensive optimization process, ensuring efficient use of caching resources.

How It Works

  1. Identify Caching Implementation: Locates the caching implementation within the project (e.g., Redis, Memcached, in-memory caches).
  2. Analyze Cache Configuration: Examines the existing cache configuration, including TTL values, eviction policies, and key structures.
  3. Recommend Optimizations: Suggests improvements to cache hit rates, TTLs, key design, invalidation strategies, and memory usage.

When to Use This Skill

This skill activates when you need to:

  • Improve application performance by optimizing caching mechanisms.
  • Identify and resolve caching-related bottlenecks.
  • Review and improve cache key design for better hit rates.

Examples

Example 1: Optimizing Redis Cache

User request: "Optimize Redis cache performance."

The skill will:

  1. Analyze the Redis configuration, including TTLs and memory usage.
  2. Recommend optimal TTL values based on data access patterns.

Example 2: Improving Cache Hit Rate

User request: "Improve cache hit rate in my application."

The skill will:

  1. Analyze cache key design and identify potential areas for improvement.
  2. Suggest more effective cache key structures to increase hit rates.

Best Practices

  • TTL Management: Set appropriate TTL values to balance data freshness and cache hit rates.
  • Key Design: Use consistent and well-structured cache keys for efficient retrieval.
  • Invalidation Strategies: Implement proper cache invalidation strategies to avoid serving stale data.

Integration

This skill can integrate with code analysis tools to automatically identify caching implementations and configuration. It can also work with monitoring tools to track cache hit rates and performance metrics.

GitHub リポジトリ

jeremylongshore/claude-code-plugins-plus
パス: plugins/performance/cache-performance-optimizer/skills/cache-performance-optimizer
aiautomationclaude-codedevopsmarketplacemcp

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る