MCP HubMCP Hub
スキル一覧に戻る

covariant-fibrations

majiayu000
更新日 2 days ago
20 閲覧
58
9
58
GitHubで表示
その他general

について

このスキルは、有向空間上の依存型に対する共変ファイブレーションを実装し、型ファミリーが有向射に沿って値を転送できるようにします。Riehl-Shulmanフレームワークに従い、∞-圏における射の方向性を尊重する有向転送操作を提供します。型ファミリーが非可逆な経路に沿って伝播する必要がある有向型理論を扱う際にご利用ください。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/covariant-fibrations

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Covariant Fibrations Skill: Directed Transport

Status: ✅ Production Ready Trit: -1 (MINUS - validator/constraint) Color: #2626D8 (Blue) Principle: Type families respect directed morphisms Frame: Covariant transport along 2-arrows


Overview

Covariant Fibrations are type families B : A → U where transport goes with the direction of morphisms. In directed type theory, this ensures type families correctly propagate along the directed interval 𝟚.

  1. Directed interval 𝟚: Type with 0 → 1 (not invertible)
  2. Covariant transport: f : a → a' induces B(a) → B(a')
  3. Segal condition: Composition witness for ∞-categories
  4. Fibration condition: Lift existence (not uniqueness)

Core Formula

For P : A → U covariant fibration:
  transport_P : (f : Hom_A(a, a')) → P(a) → P(a')
  
Covariance: transport respects composition
  transport_{g∘f} = transport_g ∘ transport_f
-- Directed type theory (Narya-style)
covariant_fibration : (A : Type) → (P : A → Type) → Type
covariant_fibration A P = 
  (a a' : A) → (f : Hom A a a') → P a → P a'

Key Concepts

1. Covariant Transport

-- Transport along directed morphisms
cov-transport : {A : Type} {P : A → Type} 
              → is-covariant P
              → {a a' : A} → Hom A a a' → P a → P a'
cov-transport cov f pa = cov.transport f pa

-- Functoriality
cov-comp : cov-transport (g ∘ f) ≡ cov-transport g ∘ cov-transport f

2. Cocartesian Lifts

-- Cocartesian lift characterizes covariant fibrations
is-cocartesian : {E B : Type} (p : E → B) 
               → {e : E} {b' : B} → Hom B (p e) b' → Type
is-cocartesian p {e} {b'} f = 
  Σ (e' : E), Σ (f̃ : Hom E e e'), (p f̃ ≡ f) × is-initial(f̃)

3. Segal Types with Covariance

-- Covariant families over Segal types
covariant-segal : (A : Segal) → (P : A → Type) → Type
covariant-segal A P = 
  (x y z : A) → (f : Hom x y) → (g : Hom y z) →
  cov-transport (g ∘ f) ≡ cov-transport g ∘ cov-transport f

Commands

# Validate covariance conditions
just covariant-check fibration.rzk

# Compute cocartesian lifts
just cocartesian-lift base-morphism.rzk

# Generate transport terms
just cov-transport source target

Integration with GF(3) Triads

covariant-fibrations (-1) ⊗ directed-interval (0) ⊗ synthetic-adjunctions (+1) = 0 ✓  [Transport]
covariant-fibrations (-1) ⊗ elements-infinity-cats (0) ⊗ rezk-types (+1) = 0 ✓  [∞-Fibrations]

Related Skills

  • directed-interval (0): Base directed type 𝟚
  • synthetic-adjunctions (+1): Generate adjunctions from fibrations
  • segal-types (-1): Validate Segal conditions

Skill Name: covariant-fibrations Type: Directed Transport Validator Trit: -1 (MINUS) Color: #2626D8 (Blue)

Scientific Skill Interleaving

This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:

Graph Theory

  • networkx [○] via bicomodule
    • Universal graph hub

Bibliography References

  • homotopy-theory: 29 citations in bib.duckdb

SDF Interleaving

This skill connects to Software Design for Flexibility (Hanson & Sussman, 2021):

Primary Chapter: 7. Propagators

Concepts: propagator, cell, constraint, bidirectional, TMS

GF(3) Balanced Triad

covariant-fibrations (+) + SDF.Ch7 (○) + [balancer] (−) = 0

Skill Trit: 1 (PLUS - generation)

Connection Pattern

Propagators flow constraints bidirectionally. This skill propagates information.

Cat# Integration

This skill maps to Cat# = Comod(P) as a bicomodule in the equipment structure:

Trit: 0 (ERGODIC)
Home: Prof
Poly Op: ⊗
Kan Role: Adj
Color: #26D826

GF(3) Naturality

The skill participates in triads satisfying:

(-1) + (0) + (+1) ≡ 0 (mod 3)

This ensures compositional coherence in the Cat# equipment structure.

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/covariant-fibrations

関連スキル

algorithmic-art

メタ

This Claude Skill creates original algorithmic art using p5.js with seeded randomness and interactive parameters. It generates .md files for algorithmic philosophies, plus .html and .js files for interactive generative art implementations. Use it when developers need to create flow fields, particle systems, or other computational art while avoiding copyright issues.

スキルを見る

subagent-driven-development

開発

This skill executes implementation plans by dispatching a fresh subagent for each independent task, with code review between tasks. It enables fast iteration while maintaining quality gates through this review process. Use it when working on mostly independent tasks within the same session to ensure continuous progress with built-in quality checks.

スキルを見る

executing-plans

デザイン

Use the executing-plans skill when you have a complete implementation plan to execute in controlled batches with review checkpoints. It loads and critically reviews the plan, then executes tasks in small batches (default 3 tasks) while reporting progress between each batch for architect review. This ensures systematic implementation with built-in quality control checkpoints.

スキルを見る

cost-optimization

その他

This Claude Skill helps developers optimize cloud costs through resource rightsizing, tagging strategies, and spending analysis. It provides a framework for reducing cloud expenses and implementing cost governance across AWS, Azure, and GCP. Use it when you need to analyze infrastructure costs, right-size resources, or meet budget constraints.

スキルを見る