go-testing
について
go-testingスキルは、MCPSpyプロジェクト向けのGo言語テストタスクを処理します。これにはテストの実行、新規テストの作成、およびテスト失敗のデバッグが含まれます。このスキルは、重要なアサーションには`require`を、重要でないアサーションには`assert`を使用するなど、プロジェクトの規約に従います。Goのテストファイルを扱う際、テストケースを実装する際、またはコードベースのテスト問題を修正する際に、このスキルを使用してください。
クイックインストール
Claude Code
推奨/plugin add https://github.com/alex-ilgayev/MCPSpygit clone https://github.com/alex-ilgayev/MCPSpy.git ~/.claude/skills/go-testingこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Go Testing Skill
Provides guidance and automation for Golang testing tasks in the MCPSpy project.
Testing Philosophy
- Use
requirelibrary for assertions that should stop test execution on failure - Use
assertlibrary for non-critical assertions where test should continue - Choose internal vs external package testing based on what needs to be tested
- Test internal functions by placing test files in the same package (no
_testsuffix) - Avoid creating externally facing functions solely for testing purposes
When to Use This Skill
- Running unit tests with
go test - Writing new test files and test cases
- Debugging and fixing failing tests
- Implementing test fixtures and mocks
- Improving test coverage for the MCPSpy project
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
