fuzzing-apis
について
fuzzing-apisスキルは、不正な形式の入力や境界値を生成することで、SQLインジェクションやXSSなどの脆弱性を発見する、APIの自動セキュリティテストを可能にします。開発者は、APIエンドポイントのファジーテスト、脆弱性スキャン、セキュリティ分析を実施する必要がある場合に、このスキルを使用すべきです。`/fuzz-api`コマンドを介して呼び出され、セキュリティ上の欠陥やエッジケースを特定するための包括的なテストスイートを作成します。
クイックインストール
Claude Code
推奨/plugin add https://github.com/jeremylongshore/claude-code-plugins-plusgit clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/fuzzing-apisこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Overview
This skill allows Claude to conduct automated fuzz testing on REST APIs. It identifies potential security flaws and robustness issues by injecting various malformed inputs, boundary values, and random data.
How It Works
- Input Generation: The skill generates a diverse set of test inputs, including malformed data, boundary values, and random payloads.
- API Interaction: It sends these inputs to the specified API endpoints.
- Result Analysis: It analyzes the API's responses and behavior to identify vulnerabilities, crashes, and unexpected results, such as SQL injection errors or XSS vulnerabilities.
When to Use This Skill
This skill activates when you need to:
- Identify potential security vulnerabilities in an API.
- Test the robustness of an API against unexpected inputs.
- Ensure proper input validation is implemented in an API.
Examples
Example 1: Discovering SQL Injection Vulnerability
User request: "Fuzz test the /users endpoint for SQL injection vulnerabilities."
The skill will:
- Generate SQL injection payloads.
- Send these payloads to the /users endpoint.
- Analyze the API's responses for SQL errors or unexpected behavior indicating a SQL injection vulnerability.
Example 2: Testing Input Validation
User request: "Fuzz test the /products endpoint to check for input validation issues with price and quantity parameters."
The skill will:
- Generate malformed inputs for price and quantity (e.g., negative values, extremely large numbers, non-numeric characters).
- Send these inputs to the /products endpoint.
- Analyze the API's responses for errors or unexpected behavior, indicating input validation failures.
Best Practices
- Specificity: Be specific about the API endpoint or parameters you want to fuzz.
- Context: Provide context about the expected behavior of the API.
- Iteration: Run multiple fuzzing sessions with different input sets for thorough testing.
Integration
This skill can be used in conjunction with other security analysis tools to provide a more comprehensive assessment of an API's security posture. It can also be integrated into a CI/CD pipeline to automate security testing.
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
