MCP HubMCP Hub
スキル一覧に戻る

openai-image-gen

steipete
更新日 Today
161 閲覧
468
45
468
GitHubで表示
メタaiapi

について

このClaude Skillは、OpenAIのDALL-E APIを使用した自動プロンプト生成による画像の一括生成を行います。ランダムでありながら構造化されたプロンプトサンプラーを備え、結果を閲覧するためのHTMLギャラリーを自動的に作成します。開発者は、モデル、サイズ、出力品質などのカスタマイズ可能なパラメータを用いて、AI生成画像の迅速なプロトタイピングに活用できます。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/steipete/clawdis
Git クローン代替
git clone https://github.com/steipete/clawdis.git ~/.claude/skills/openai-image-gen

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

OpenAI Image Gen

Generate a handful of “random but structured” prompts and render them via the OpenAI Images API.

Run

python3 {baseDir}/scripts/gen.py
open ~/Projects/tmp/openai-image-gen-*/index.html  # if ~/Projects/tmp exists; else ./tmp/...

Useful flags:

python3 {baseDir}/scripts/gen.py --count 16 --model gpt-image-1
python3 {baseDir}/scripts/gen.py --prompt "ultra-detailed studio photo of a lobster astronaut" --count 4
python3 {baseDir}/scripts/gen.py --size 1536x1024 --quality high --out-dir ./out/images

Output

  • *.png images
  • prompts.json (prompt → file mapping)
  • index.html (thumbnail gallery)

GitHub リポジトリ

steipete/clawdis
パス: skills/openai-image-gen
relaywhatsapp

関連スキル

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る