MCP HubMCP Hub
スキル一覧に戻る

building-automl-pipelines

jeremylongshore
更新日 Today
48 閲覧
712
74
712
GitHubで表示
メタwordaiautomationdesigndata

について

このスキルにより、ユーザーが自動化された機械学習ワークフローを要求した際に、Claudeはautoml-pipeline-builderプラグインを使用して完全なAutoMLパイプラインを自動生成できます。データ検証、モデルトレーニング、パフォーマンス指標、およびドキュメント付きアーティファクト生成を処理します。開発者は、AutoMLパイプラインの構築やMLプロセスの自動化を明示的に依頼された場合に、このスキルを使用すべきです。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git クローン代替
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/building-automl-pipelines

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Overview

This skill automates the creation of machine learning pipelines using the automl-pipeline-builder plugin. It simplifies the process of building, training, and evaluating machine learning models by automating feature engineering, model selection, and hyperparameter tuning.

How It Works

  1. Analyze Requirements: The skill analyzes the user's request and identifies the specific machine learning task and data requirements.
  2. Generate Code: Based on the analysis, the skill generates the necessary code to build an AutoML pipeline using appropriate libraries.
  3. Implement Best Practices: The skill incorporates data validation, error handling, and performance optimization techniques into the generated code.
  4. Provide Insights: After execution, the skill provides performance metrics, insights, and documentation for the created pipeline.

When to Use This Skill

This skill activates when you need to:

  • Build an automated machine learning pipeline.
  • Automate the process of model selection and hyperparameter tuning.
  • Generate code for a complete AutoML workflow.

Examples

Example 1: Creating a Classification Pipeline

User request: "Build an AutoML pipeline for classifying customer churn."

The skill will:

  1. Generate code to load and preprocess customer data.
  2. Create an AutoML pipeline that automatically selects and tunes a classification model.

Example 2: Optimizing a Regression Model

User request: "Create an automated ml pipeline to predict house prices."

The skill will:

  1. Generate code to build a regression model using AutoML techniques.
  2. Automatically select the best performing model and provide performance metrics.

Best Practices

  • Data Preparation: Ensure data is clean, properly formatted, and relevant to the machine learning task.
  • Performance Monitoring: Continuously monitor the performance of the AutoML pipeline and retrain the model as needed.
  • Error Handling: Implement robust error handling to gracefully handle unexpected issues during pipeline execution.

Integration

This skill can be integrated with other data processing and visualization plugins to create end-to-end machine learning workflows. It can also be used in conjunction with deployment plugins to automate the deployment of trained models.

GitHub リポジトリ

jeremylongshore/claude-code-plugins-plus
パス: backups/skill-structure-cleanup-20251108-073936/plugins/ai-ml/automl-pipeline-builder/skills/automl-pipeline-builder
aiautomationclaude-codedevopsmarketplacemcp

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る