github-integration
について
このGitHub連携スキルは、PRレビュー、マルチリポジトリ操作、MCPツール統合によるプロジェクト管理など、GitHubに特化したタスクを調整します。構造化されたルーティングに安全ガードレールと標準化された手順を備え、一貫したGitHub自動化を実現します。組み込みのコンプライアンスとツール連携を活用し、複数のGitHubワークフローを自動化または調整する必要がある場合にご利用ください。
クイックインストール
Claude Code
推奨/plugin add https://github.com/DNYoussef/context-cascadegit clone https://github.com/DNYoussef/context-cascade.git ~/.claude/skills/github-integrationこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
L1 Improvement
- Added a centralized SOP in Prompt Architect style with Skill Forge guardrails for all GitHub subskills.
- Documented routing, MCP tool expectations, and confidence ceilings.
- Introduced structure-first documentation and memory tagging.
STANDARD OPERATING PROCEDURE
Purpose
Route and coordinate GitHub tasks across subskills (PR review, multi-repo, project management, releases, workflow automation) with consistent SOPs and MCP integrations.
Trigger Conditions
- Positive: GitHub PR reviews, multi-repo coordination, project board automation, release orchestration, or workflow automation requests.
- Negative: non-GitHub SCM or local-only tasks; route to platform-specific skills.
Guardrails
- Structure-first docs: SKILL, README, MCP guide kept current.
- Explicit routing to subskills; do not mix flows without stating boundaries.
- Enforce least-privilege credentials; never log secrets.
- Confidence ceilings required on analyses and automation changes.
- Memory tagging for runs and auditability.
Execution Phases
- Intent & Routing – Identify which subskill applies; confirm repository scope, permissions, and risk level.
- Setup – Ensure MCP servers (Claude Flow, Flow Nexus if used) are configured; validate tokens; set WHO/WHY/PROJECT/WHEN tags.
- Plan – Map actions, safety checks, and rollback; align with subskill SOP.
- Execute – Run subskill workflows (review/multi-repo/project/release/actions) with logging and dry-runs where possible.
- Validate – Verify results (tests, checks, approvals) and ensure no secrets leaked.
- Deliver – Summarize actions, outputs, risks, and confidence line; archive in memory.
Output Format
- Routed subskill(s), repo scope, MCP servers used, and actions taken.
- Results/metrics, risks, and follow-ups.
- Confidence: X.XX (ceiling: TYPE Y.YY) and memory namespace.
Validation Checklist
- Correct subskill chosen; permissions confirmed.
- MCP servers configured; secrets protected.
- Actions logged with rollback/cleanup notes.
- Memory tagged; confidence ceiling declared.
Integration
- Subskills: PR review, multi-repo, project management, release management, workflow automation folders under this skill.
- MCP: see
MCP-INTEGRATION-GUIDE.mdfor commands; tag sessions with WHO/WHY/PROJECT/WHEN. - Memory MCP:
skills/tooling/github-integration/{project}/{timestamp}for runs.
Confidence: 0.70 (ceiling: inference 0.70) – SOP aligns GitHub integrations with Prompt Architect and Skill Forge guardrails.
GitHub リポジトリ
関連スキル
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
cloudflare-turnstile
メタThis skill provides comprehensive guidance for implementing Cloudflare Turnstile as a CAPTCHA-alternative bot protection system. It covers integration for forms, login pages, API endpoints, and frameworks like React/Next.js/Hono, while handling invisible challenges that maintain user experience. Use it when migrating from reCAPTCHA, debugging error codes, or implementing token validation and E2E tests.
langchain
メタLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers, offers 500+ integrations, and includes features like tool calling and memory management. Use it for rapid prototyping and deploying production systems like chatbots, autonomous agents, and question-answering services.
