MCP HubMCP Hub
スキル一覧に戻る

synapse-config-yaml-guide

majiayu000
更新日 Yesterday
19 閲覧
58
9
58
GitHubで表示
デザインaidesign

について

このスキルは、config.yamlファイルを使用してSynapseプラグインを設定する方法について説明し、メタデータ、アクション定義、およびランタイム設定をカバーしています。開発者がプラグイン設定、アクションメソッド、または実行環境について質問する際にご利用ください。最小限の例と完全な設定構造の両方を参考として提供します。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/majiayu000/claude-skill-registry
Git クローン代替
git clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/synapse-config-yaml-guide

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Synapse Plugin config.yaml Guide

The config.yaml file (or synapse.yaml) defines your plugin's metadata, actions, and runtime configuration.

Minimal Example

name: "My Plugin"
code: my-plugin
version: 1.0.0
category: custom

actions:
  train:
    entrypoint: plugin.train:TrainAction
    method: job
    description: "Train a model"

Complete Structure

# Basic metadata
name: "YOLOv8 Object Detection"
code: yolov8
version: 1.0.0
category: neural_net
description: "Train and run YOLOv8 models"
readme: README.md

# Package management
package_manager: pip  # or 'uv'
package_manager_options: []
wheels_dir: wheels

# Environment variables
env:
  DEBUG: "false"
  BATCH_SIZE: "32"

# Runtime environment (Ray)
runtime_env: {}

# Data type configuration
data_type: image
tasks:
  - image.object_detection
  - image.segmentation

# Actions
actions:
  train:
    entrypoint: plugin.train:TrainAction
    method: job
    description: "Train YOLO model"
  inference:
    entrypoint: plugin.inference:run
    method: task
    description: "Run inference"

Action Configuration

FieldRequiredDescription
entrypointYesModule path (module.path:ClassName or module.path.function)
methodNoExecution method: job, task, or serve (default: task)
descriptionNoHuman-readable description

Config Sync (Recommended)

Sync entrypoints, input/output types, and hyperparameters from code:

synapse plugin update-config

Execution Methods

MethodUse CaseCharacteristics
jobTraining, batch processingAsync, isolated, long-running (100s+)
taskInteractive operationsSync, fast startup (<1s), serial per actor
serveModel serving, inferenceREST API endpoint, auto-scaling

Entrypoint Formats

Both formats are supported:

  • Colon notation: plugin.train:TrainAction
  • Dot notation: plugin.train.TrainAction

Additional Resources

For detailed configuration options:

GitHub リポジトリ

majiayu000/claude-skill-registry
パス: skills/config-yaml-guide

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

creating-opencode-plugins

メタ

This skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.

スキルを見る

evaluating-llms-harness

テスト

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

スキルを見る

sglang

メタ

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

スキルを見る