synapse-config-yaml-guide
について
このスキルは、config.yamlファイルを使用してSynapseプラグインを設定する方法について説明し、メタデータ、アクション定義、およびランタイム設定をカバーしています。開発者がプラグイン設定、アクションメソッド、または実行環境について質問する際にご利用ください。最小限の例と完全な設定構造の両方を参考として提供します。
クイックインストール
Claude Code
推奨/plugin add https://github.com/majiayu000/claude-skill-registrygit clone https://github.com/majiayu000/claude-skill-registry.git ~/.claude/skills/synapse-config-yaml-guideこのコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします
ドキュメント
Synapse Plugin config.yaml Guide
The config.yaml file (or synapse.yaml) defines your plugin's metadata, actions, and runtime configuration.
Minimal Example
name: "My Plugin"
code: my-plugin
version: 1.0.0
category: custom
actions:
train:
entrypoint: plugin.train:TrainAction
method: job
description: "Train a model"
Complete Structure
# Basic metadata
name: "YOLOv8 Object Detection"
code: yolov8
version: 1.0.0
category: neural_net
description: "Train and run YOLOv8 models"
readme: README.md
# Package management
package_manager: pip # or 'uv'
package_manager_options: []
wheels_dir: wheels
# Environment variables
env:
DEBUG: "false"
BATCH_SIZE: "32"
# Runtime environment (Ray)
runtime_env: {}
# Data type configuration
data_type: image
tasks:
- image.object_detection
- image.segmentation
# Actions
actions:
train:
entrypoint: plugin.train:TrainAction
method: job
description: "Train YOLO model"
inference:
entrypoint: plugin.inference:run
method: task
description: "Run inference"
Action Configuration
| Field | Required | Description |
|---|---|---|
entrypoint | Yes | Module path (module.path:ClassName or module.path.function) |
method | No | Execution method: job, task, or serve (default: task) |
description | No | Human-readable description |
Config Sync (Recommended)
Sync entrypoints, input/output types, and hyperparameters from code:
synapse plugin update-config
Execution Methods
| Method | Use Case | Characteristics |
|---|---|---|
job | Training, batch processing | Async, isolated, long-running (100s+) |
task | Interactive operations | Sync, fast startup (<1s), serial per actor |
serve | Model serving, inference | REST API endpoint, auto-scaling |
Entrypoint Formats
Both formats are supported:
- Colon notation:
plugin.train:TrainAction - Dot notation:
plugin.train.TrainAction
Additional Resources
For detailed configuration options:
- references/fields.md - All config.yaml fields
- references/smart-tool.md - Smart tool configuration
GitHub リポジトリ
関連スキル
content-collections
メタThis skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.
creating-opencode-plugins
メタThis skill provides the structure and API specifications for creating OpenCode plugins that hook into 25+ event types like commands, files, and LSP operations. It offers implementation patterns for JavaScript/TypeScript modules that intercept and extend the AI assistant's lifecycle. Use it when you need to build event-driven plugins for monitoring, custom handling, or extending OpenCode's capabilities.
evaluating-llms-harness
テストThis Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.
sglang
メタSGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.
