MCP HubMCP Hub
スキル一覧に戻る

Optimizing SQL Queries

jeremylongshore
更新日 Today
38 閲覧
712
74
712
GitHubで表示
メタdata

について

このスキルはSQLクエリを分析し、パフォーマンスのボトルネックを特定し、インデックス作成やクエリ書き換えなどの最適化を提案します。開発者が遅いクエリについて言及した時や、SQLパフォーマンスとインデックス作成に関する支援を必要とした際に発動します。このツールは、クエリ構造と実行計画を検討することで、データベース効率を向上させる実行可能な推奨事項を提供します。

クイックインストール

Claude Code

推奨
プラグインコマンド推奨
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git クローン代替
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/Optimizing SQL Queries

このコマンドをClaude Codeにコピー&ペーストしてスキルをインストールします

ドキュメント

Overview

This skill empowers Claude to analyze SQL queries, identify performance bottlenecks, and suggest optimizations such as index creation or query rewriting. It leverages the sql-query-optimizer plugin to provide actionable recommendations for improving database performance.

How It Works

  1. Query Input: The user provides an SQL query to be optimized.
  2. Analysis: The plugin analyzes the query structure, potential indexing issues, and execution plan (if available).
  3. Recommendations: The plugin generates optimization suggestions, including index recommendations and query rewrites.

When to Use This Skill

This skill activates when you need to:

  • Optimize a slow-running SQL query.
  • Identify missing or unused indexes in a database.
  • Improve the performance of a database application.

Examples

Example 1: Optimizing a Slow Query

User request: "Optimize this SQL query: SELECT * FROM orders WHERE customer_id = 123 AND order_date < '2023-01-01';"

The skill will:

  1. Analyze the provided SQL query.
  2. Suggest creating an index on customer_id and order_date columns to improve query performance.

Example 2: Finding Indexing Opportunities

User request: "I need help optimizing a query that filters on product_category and price. Can you suggest any indexes?"

The skill will:

  1. Analyze a hypothetical query based on the user's description.
  2. Recommend a composite index on (product_category, price) to speed up filtering.

Best Practices

  • Provide Full Queries: Include the complete SQL query for accurate analysis.
  • Include EXPLAIN Output: Providing the output of EXPLAIN can help the optimizer identify bottlenecks more effectively.
  • Test Recommendations: Always test the suggested optimizations in a staging environment before applying them to production.

Integration

This skill can be used in conjunction with other database management plugins to automate index creation and query rewriting based on the optimizer's suggestions.

GitHub リポジトリ

jeremylongshore/claude-code-plugins-plus
パス: backups/plugin-enhancements/plugin-backups/sql-query-optimizer_20251020_055446/skills/skill-adapter
aiautomationclaude-codedevopsmarketplacemcp

関連スキル

content-collections

メタ

This skill provides a production-tested setup for Content Collections, a TypeScript-first tool that transforms Markdown/MDX files into type-safe data collections with Zod validation. Use it when building blogs, documentation sites, or content-heavy Vite + React applications to ensure type safety and automatic content validation. It covers everything from Vite plugin configuration and MDX compilation to deployment optimization and schema validation.

スキルを見る

polymarket

メタ

This skill enables developers to build applications with the Polymarket prediction markets platform, including API integration for trading and market data. It also provides real-time data streaming via WebSocket to monitor live trades and market activity. Use it for implementing trading strategies or creating tools that process live market updates.

スキルを見る

hybrid-cloud-networking

メタ

This skill configures secure hybrid cloud networking between on-premises infrastructure and cloud platforms like AWS, Azure, and GCP. Use it when connecting data centers to the cloud, building hybrid architectures, or implementing secure cross-premises connectivity. It supports key capabilities such as VPNs and dedicated connections like AWS Direct Connect for high-performance, reliable setups.

スキルを見る

llamaindex

メタ

LlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.

スキルを見る